

Defence Research and Recherche et développement
Development Canada pour la défense Canada

Internet Based Robot Control Using
CORBA Based Communications

Defence R&D Canada

Technical Memorandum

DRDC Suffield TM 2009-127

December 2009

A study into the simplification of multirobot control

S. Verret and J. Collier
DRDC Suffield

A. von Bertoldi
ADGA Inc.

Internet Based Robot Control Using
CORBA Based Communications
A study into the simplification of multirobot control

S. Verret and J. Collier
Defence R&D Canada – Suffield

A. von Bertoldi
ADGA Inc.
125 Taravista Way NE
Calgary, Alberta
T3J 4K8

December 2009
DRDC Suffield TM 2009-127

Defence R&D Canada – Suffield
Technical Memorandum

Principal Author
Original signed by S. Verret

S. Verret

Approved by

D.M. Hanna

Head/AISS

Approved for release by

Original signed by D.M. Hanna

Original signed by Dr P.A. D’Agostino

Dr P.A. D’Agostino

Head/Document Review Panel

© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2009

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense
nationale, 2009

Abstract

Researchers in the field of robotics have been seeking methods to both control and
monitor their vehicles. Unfortunately the programs they have developed to perform
these tasks are normally dependent on the robotic software infrastructure or are very
difficult to understand for an outside user. This paper looks to tackle the problem of
monitoring and controlling a robotics system using a web browser. The goal of this
paper is to describe the potential for a system that will control and monitor a CORBA
based robotics framework from a simple HTTP based browser.

Résumé

Les chercheurs dans le domaine de la robotique ont cherché des méthodes qui à la fois
commandent et surveillent leurs véhicules. Les programmes qu’ils ont développé pour
effectuer ces tâches sont malheureusement dépendants de l’infrastructure des logiciels
en robotique et sont généralement difficiles à comprendre pour un utilisateur extérieur.
Cet article cherche à s’attaquer au problème de la surveillance et de la commande d’un
système de robotique qui utilise un navigateur Web. Le but de cet article est de décrire
le potentiel d’un système capable de commander et surveiller un cadriciel en robotique
basé sur CORBA à partir d’un simple cadriciel basé sur HTTP.

DRDC Suffield TM 2009-127 i

This page intentionally left blank.

ii DRDC Suffield TM 2009-127

Executive summary

Internet Based Robot Control Using CORBA Based
Communications

S. Verret, J. Collier, A. von Bertoldi; DRDC Suffield TM 2009-127; Defence R&D
Canada – Suffield; December 2009.

Background: Scientists at Defence R&D Canada – Suffield investigate software
architectures for unmanned systems. The Autonomous Land Systems (ALS) and
Cohort projects, undertaken by the Autonomous Intelligent Systems Section (AISS),
resulted in the Architecture for Autonomy (AFA), a distributed software framework
and design methodology for unmanned systems. Despite the large effort in developing
the AFA, no effort has been undertaken to develop a graphical user interface (GUI) to
interact with the AFA for multirobot high level control.

This paper investigates various design solutions for a web browser based GUI to
perform high level control of heterogeneous multirobot systems. A browser based
solution is preferred as it is operating system independent, can be distributed across
multiple robots, harnesses the powerful capabilities of today’s browsers and web-based
toolkits, and greatly simplifies/eliminates GUI configuration and installation.

Principle Results: Numerous software packages, toolkits and scripting languages were
evaluated for their applicability to web based robot control. Criteria for selection
included ease of deployment, maintainability, scalability, support for existing
infrastructure, etc. Additionally, software design methodologies were evaluated
including different browser, and server side configurations. This rigorous evaluation
resulted in a preliminary design solution.

Significance of Results: Adoption of the tools and design methodology will result in a
GUI that is responsive, scalable, easy to deploy, operating system independent, and easy
to develop. The proposed solution cleanly separates the GUI from the application (i.e.,
the AFA). For these reasons, the GUI will be easily maintained and adapted for future
research.

Future Work: Development of the proposed GUI will be incremental based on the
design decisions presented in this paper. The modularity of the AFA, and thus, the web
based GUI enables a simple interface to one robotic element (e.g. Odometry) to be
designed, tested, and evaluated to assess the performance of the methodology.
Refinements and/or design changes may occur as a result of this testing. The software
architecture will solidify as more modules are developed. Aesthetic design and display

DRDC Suffield TM 2009-127 iii

issues can be addressed as needed and should not affect the actual design methodology
and toolset. The proposed GUI is expected to be used for the AISS research in the
forseeable future with continued development as new autonomous capabilities are
integrated into the AFA.

iv DRDC Suffield TM 2009-127

Sommaire

Internet Based Robot Control Using CORBA Based
Communications

S. Verret, J. Collier, A. von Bertoldi; DRDC Suffield TM 2009-127; R & D pour la
défense Canada – Suffield; Décembre 2009.

Contexte : Les scientifiques de R & D pour la défense Canada – Suffield examinent les
architectures de logiciels pour les systèmes sans équipage. Les projets des Systèmes
terrestres autonomes (STA) et Cohort, entrepris par la Section des Systèmes intelligents
autonomes (SSIA) ont résulté en l’Architecture d’autonomie (Architecture for
Autonomy), un cadriciel de logiciels distribué et une méthodologie de conception pour
les systèmes sans équipage. En dépit de l’effort important qui a consisté à développer
l’Architecture d’autonomie, aucun effort n’a été entrepris pour développer l’interface
graphique (GUI) qui interagit avec l’Architecture d’autonomie pour la commande
multirobot de haut niveau.

Cet article examine les solutions de concepts variés pour un GUI basé sur un navigateur
Web qui vise à effectuer des commandes de haut niveau de systèmes multirobot
hétérogènes. On préfère une solution basée sur un navigateur parce qu’il s’agit d’un
système d’exploitation indépendant qui peut être distribué à travers des robots multiples,
qui peut aménager les capacités puissantes des navigateurs d’aujourd’hui et des boîtes à
outils logiciels et qui simplifie et élimine grandement la configuration et l’installation
GUI.

Résultats principaux : De nombreux progiciels, boîtes à outils logiciels et langages de
script ont été évalué en vertu de leur applicabilité à la commande de robot basée sur le
web. Les critères de sélection incluent la facilité de déploiement, de maintenance, de
variabilité d’échelle, de soutien de l’infrastructure existante, etc. De plus, les
méthodologies de concept de logiciels qui ont été évaluées comprennent des
configurations différentes de navigateurs et de côtés serveurs. Cette évaluation rigoureuse
a résulté en une solution de concept préliminaire.

Portée des résultats : L’adoption d’une méthodologie de concepts et d’outils résultera en
un GUI qui est réceptif, échelonnable, facile à déployer, un système opérationnel
indépendant et facile à développer. La solution proposée sépare nettement le GUI de
l’application (ex.: Architecture d’autonomie). C’est pour cette raison que le GUI sera
facilement maintenu et adapté à la recherche future.

DRDC Suffield TM 2009-127 v

Perspectives d’avenir : Le développement du GUI proposé sera incrémentiel et basé sur
les décisions de concepts présentées dans cet article. La modularité de l’Architecture
d’autonomie et par conséquent du GUI basé sur le Web permet à la simple interface
d’un élément robotique (ex. : odométrie) d’être conçue, testée et évaluée pour connaître
le rendement de la méthodologie. Les raffinements et les changements de concepts
pourront résulter de ce test. L’architecture de logiciel se solidifiera alors que des
modèles supplémentaires seront mis au point. Les problèmes d’esthétique des concepts
et d’affichage pourront être abordés selon les besoins et ne devraient pas affecter la
méthodologie du concept et de la boîte à outils logiciels actuels. On prévoit que le GUI
proposé sera utilisé pour la recherche des SSIA dans un avenir prévisible alors que de
nouvelles capacités sont intégrées dans l’Architecture d’autonomie avec le
développement continu.

vi DRDC Suffield TM 2009-127

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . v

Table of contents . vii

List of figures . xi

List of tables . xi

1 Introduction . 1

2 Communications . 2

2.1 Current System . 2

2.1.1 Implications . 4

2.2 Problem Definition . 4

2.2.1 Constraints . 4

2.2.2 Challenges . 5

2.3 Criteria . 6

2.3.1 Existing Infrastructure . 6

2.3.2 Authentication . 8

2.3.3 Multiple Clients . 8

2.3.4 Performance/Server Load 8

2.3.5 Communication Delay . 8

2.3.6 Media Types . 8

2.3.7 Separation of Logic and Presentation 9

2.3.8 CORBA Support . 9

DRDC Suffield TM 2009-127 vii

2.3.9 Ease of Deployment . 9

2.3.10 Maintainability . 9

2.3.11 Scalability . 10

2.3.12 Open Source . 10

2.4 Existing Work . 10

3 Internet Based Control . 10

3.1 Client-Side Technologies . 11

3.1.1 Java Applets . 11

3.1.2 Browser Extension . 12

3.1.3 Ajax . 13

3.1.4 Adobe Flash . 14

3.2 Custom HTTP-IIOP Proxy . 15

3.3 Server-Side Remote Code Invocation 16

3.3.1 CGI . 16

3.3.2 FastCGI . 17

3.3.3 Servlets . 18

3.3.4 Application Server . 19

3.4 Server-Side Scripting . 20

3.4.1 PHP . 21

3.4.2 Ruby . 21

3.4.3 Perl . 22

3.4.4 Python . 22

3.4.5 xSP . 22

3.4.6 Comparison . 23

viii DRDC Suffield TM 2009-127

3.5 Other Methods . 23

3.5.1 mod corba . 23

3.5.2 mod cbroker . 24

3.6 Web Services Models/Architectures 26

3.6.1 RESTfull Web Services . 26

3.6.2 WSDL-based Web Services 27

3.6.3 Hybrid Web Services . 29

3.7 Toolkits . 30

3.7.1 JavaScript/Ajax . 30

3.7.2 SOAP . 31

4 Solutions . 31

4.1 Client Solutions . 31

4.1.1 Browser Component . 31

4.1.2 Server-Side Component . 32

4.1.3 Provision . 33

4.2 Service Endpoint Solutions . 33

4.2.1 Script Module . 36

4.2.2 FastCGI . 38

4.2.3 Servlet/Application Server 38

5 Discussion . 41

5.1 Client . 41

5.1.1 Browser-Only vs Server-Side Solution 41

5.2 Service . 42

5.2.1 Script Module . 42

DRDC Suffield TM 2009-127 ix

5.2.2 FastCGI . 44

5.2.3 Servlet/Application Server 46

5.2.4 Uncertainties . 48

6 Conclusion . 48

6.1 Technology Selection . 48

6.1.1 Client . 48

6.1.2 Service . 49

6.2 Implementation Plan . 49

6.3 Contingencies . 51

References . 52

x DRDC Suffield TM 2009-127

List of figures

Figure 1: Components of the communication framework 7

Figure 2: Cbroker based solution. 25

Figure 3: Client solutions’ architecture. 34

Figure 4: Scripting module solution architecture. 37

Figure 5: FastCGI solution. 39

Figure 6: Application server solution. 40

List of tables

Table 1: Comparison of server-side scripting languages 23

DRDC Suffield TM 2009-127 xi

This page intentionally left blank.

xii DRDC Suffield TM 2009-127

1 Introduction

The Autonomous Land Systems (ALS) and Cohort projects, undertaken by the Au-
tonomous Intelligent System Section (AISS) at Defence R&D Canada – Suffield,
research and develop autonomous unmanned collaborative robotic vehicles. After a
thorough review of existing robotics toolkits, the Miro framework was chosen as a
basis on which to build the Architecture for Autonomy [1]. The Miro framework
uses the TAO implementation of the CORBA specification that relies on the ACE
toolkit for interprocess communication (IPC). TAO is a real-time implementation of
the CORBA specification for object-based communication and remote method invo-
cation (RMI). CORBA is programming language and operating system independent
and network transparent. These features make it an extremely powerful and flexible
architecture for distributed robot communication and cooperation.

The ALS software base includes ACE, TAO, Miro, DRDC’s additions to Miro (called
drdcMiro) and a large number of other libraries that provide underlying functionality
to these modules. As a result, the ALS software base is large and complex, and
requires considerable time and effort to install and learn. Additionally, to interact
with any of the TAO, Miro or drdcMiro robot service objects one is required not only
to have a functioning software environment (properly installed and configured), but
also to develop software components including a graphical user interface to perform
the interaction. This is a time consuming and non-trivial task, and necessary for
even simple interactions. This situation is inconvenient and limiting. It is highly
desirable to enable a method to interact with existing TAO, Miro and drdcMiro
components that does not rely on this large and complex software environment, is
simple and convenient to use, and is consistent for all of the available Miro/drdcMiro
services/objects. Like CORBA itself, this method should be programming language
and operating system independent. Furthermore, it should be easy for those with no
knowledge of CORBA or Miro to learn and interact with, and thus should hide all
of those details from the user. Finally, it should also provide an interface or API for
developers that wish to access Miro services through this mechanism instead of the
traditional CORBA-based route.

The World Wide Web (WWW) and web browsers are an ideal platform to enable this
aim. The WWW is an open, operating-system and language independent platform
accessible from anywhere in the world. Furthermore, web-browsers are an ideal client
as they are capable of producing rich interfaces, are comparatively easy to program,
and are installed in nearly every desktop computer.

The goal of this work is to develop a method by which standard web browsers can
interact with and access the CORBA-based Miro and drdcMiro service objects, on a
robot and thus enable web-based monitoring and control of the robot. This implies a
constraint on possible solutions: Web browsers generally only support the HTTP and

DRDC Suffield TM 2009-127 1

FTP communication protocols1.Any communication between the client (i.e. the web
browser) and the robot computer (i.e. the server) must use one of these protocols.
The FTP protocol is not appropriate for this goal, thus the HTTP must be the
communication protocol between the client and server. An additional reason for
this constraint is that there can be any number of internet devices such as firewalls,
gateways and routers between the client and server, and it cannot be assumed that
these devices will allow traffic from protocols other than HTTP.

The remainder of this document is presented as follows: Section 2 gives a brief
overview of the current CORBA based architecture, describing how the software
components interact and communicate with each other and highlighting its main ad-
vantages and disadvantages. This leads to a motivation for this work, and a detailed
description of the problem. A set of criteria by which to evaluate the alternatives is
presented. Finally, the four main approaches to solving this problem highlighted from
the literature review are described. Section 3 introduces the relevant technologies,
including specific tools and architectures that could contribute, wholly or in part, to
a solution. Each piece of technology and its potential role in a solution is described,
and examples of existing uses of the technology in the problem domain are presented.
Section 4 presents possible solutions in terms of combinations of specific technologies
and architectures. Section 5 discusses the advantages, disadvantages and implications
of the potential solutions. Finally, Section 6 describes the selected and the details of
its implementation.

2 Communications
2.1 Current System

As mentioned in Section 1, the Miro robotics middleware was chosen by the AISS
group as the foundation on which to develop their distributed autonomous systems
capabilities, and includes the components described below. All of these software
components are available and can be used to implement a solution to the current
problem.

CORBA
CORBA, an interprocess communication and remote method invocation specification,
allows clients to invoke operations on distributed objects without concern for object
location, programming language, operating system, communication protocols and
interconnects or hardware. All robot services in AISS’s framework are created as
CORBA objects. Any web-based clients wishing to interact with the robot services
will at some point have to do so via CORBA standards.

1some browsers also support the bittorent and other lesses known protocols though plugins, but
for compatibility reasons only HTTP and FTP can be assumed.

2 DRDC Suffield TM 2009-127

CORBA Interface Definition Language (IDL)
CORBA allows software processes written in different languages to interact through
the Interface Definition language (IDL). IDL is a language used to define the interface
to a particular CORBA object. An IDL compiler produces client and server-side
software stubs for a particular language that allows clients to request data from and
invoke methods in the server. For any CORBA service to be accessible to clients, an
IDL must exist for the service, and the client and server stubs generated by the IDL
compiler must be included in the client and server implementation respectively.

CORBA Dynamic Invocation Interface (DII)
DII, in contrast to IDL, is a method that allows clients to interact with services
without requiring the IDL stub for that service. The DII allows a client to identify
operations, parameters and types in an object via string names. DII is more complex
and has poorer performance than IDL, but is more flexible. Any web-based clients
wishing to interact with the robot services will have to use IDL or DII.

CORBA NamingService
The NamingService is a process in which CORBA service objects register their service.
Clients can query the NamingService for a particular service and obtain a reference
to the service, which they can subsequently use to interact with it. Any web-based
clients wishing to interact with the robot services will at some point have to interact
with the NamingService.

ACE
ACE (Adaptive Communication Environment) is a powerful, operating system-independent
toolkit for concurrent communication between software components that takes care
of many of the details of interprocess communication, including event demultiplex-
ing and event handler dispatching, signal handling, service initialization, interprocess
communication, shared memory management, message routing, dynamic (re)configuration
of distributed services, concurrent execution and synchronization [2]. Although it can
be used to interact with the robot services, it is not a necessity.

TAO
TAO is an implementation of the real time CORBA specification built upon the ACE
toolkit [3]. The TAO package includes an IDL-to-C++ compiler and a NamingSer-
vice. All CORBA operations are done through TAO.

Miro
Miro is a distributed framework for robot control built upon ACE and TAO, and thus
inherits all of the features of ACE/TAO. Miro provides many common robot services
such as odometry, motion, range sensors, video and many more, all developed as
CORBA services using TAO.

DRDC Suffield TM 2009-127 3

2.1.1 Implications

CORBA is very powerful, object-oriented and network-transparent method of IPC
and RMI. It allows a developers to compose robots as a collection if individual
CORBA objects that can communicate and interoperate. Furthermore, some robot-
related processes are computationally intensive; this framework allows such services
to be run on a separate, dedicated computer in a transparent way.

While the CORBA specification is language agnostic, specific implementations of
the specification use a particular language; in TAO’s case C++. To interact with a
CORBA object it it generally wise (for reasons of compatibility and code re-use) to
implement clients using the facilities provided the CORBA implementation, such as
it’s IDL compiler. As a result, a developer is, in practice, tied to the particular im-
plementation of CORBA and it’s programming language. This fact is not inherently
a problem, other than it results in a large and complex software dependency; in this
case ACE, TAO, Miro and drdcMiro.

2.2 Problem Definition

The goal of this work is to develop a method by which standard, unmodified2 web
browsers can interact with and access the Miro service objects on a robot, and thus
enable web-based monitoring and control of the robot. Furthermore, clients must not
have any dependency whatsoever on the ACE, TAO, Miro or drdcMiro packages.

2.2.1 Constraints

Implicit in this goal are a number of constraints that will shape the solution: The
current variety of web browsers support a number of protocols including HTTP,
FTP, POP3, SMTP, Bittorrent, etc. No current browsers support the IIOP or GIOP
protocols which CORBA uses to communicate. Many browsers allow the addition of
protocols though configuration, e.g. a URL for the new protocol is associated with
a program on the computer. Whenever the URL for the new protocol is entered
into the address bar of the browser, it will call the external program to handle the
protocol requests and responses. The goal of this project could be realized using
this feature by developing an application that would communicate directly with the
CORBA object via IIOP when a new URL was entered. However, this would have the
client depend on the entire AISS software base, which is explicitly against the goals of
this project. This approach is therefore not feasible. Consequently, the solution must
rely on one of the browser’s built-in protocols. Furthermore, of the built-in protocols,
only HTTP is appropriate as it is the only one that allows multi-media content and
can be safely assumed not to be blocked by firewalls. The solution must therefore

2by unmodified we mean no source-code modifications; configuration changes are acceptable.

4 DRDC Suffield TM 2009-127

rely on the HTTP protocol, which in turn implies the use of an HTTP server in the
solution.

2.2.2 Challenges

In view of the constraints implicit in this project’s goal, there are a number of core
challenges to overcome in order to develop a solution to web-based robot control.

HTTP-IIOP Gateway
Web browsers do not understand IIOP requests and, likewise, CORBA objects do
not understand HTTP requests. This requires converting requests made by the client
over HTTP to the appropriate IIOP request from a CORBA object, and converting
the response from the CORBA service into a representation that can be digested by
the client, i.e. an HTML document. This HTTP to IIOP gateway will likely be
the largest single component of the final solution. This gateway will, on one side,
service HTTP requests made by the web client and on the other, act as a client of the
CORBA service. This component therefore requires the ability to communicate with
the HTTP server and CORBA objects. Communication with CORBA objects will
be enabled via IDL or DII, while communication with the HTTP server could occur
using a number of methods. Finally, this component of the solution will depend in
the AISS software base and should therefore reside on the same computer as CORBA
services themselves.

Client UI
Each autonomous entity will be composed of a number of CORBA objects, each
providing one or several services. These services will be varied: some will provide
information about a robot component, while others will allow certain parts of the
robot to be affected or controlled. All of these services should be accessible and
controllable from the client. It is necessary to create a client interface that not
only provides access to all the functionality of the underlying individual CORBA
service objects, but groups and presents them in a manner that results in an informal,
intuitive and highly usable interface to the autonomous entity as a whole.

Resource Addressing
A method must exist for the web browser client to refer to a specific CORBA object
residing on a robot, and possibly a specific method on that object. A scheme must be
developed to associate a web browser addressable URL to each of the CORBA services
on a robot, and possibly each of the methods defined in that object’s interface.

Message Format
Client/server communication must take place over HTTP. However, as discussed in
Sections 4 and 6, limiting the client-server transaction to HTTP requests and HTML
responses has several disadvantages. Therefore, a message format to represent client

DRDC Suffield TM 2009-127 5

request and service responses must be developed. This message format must be
able to represent all relevant CORBA interface data including: CORBA namespace,
the CORBA object name, the object’s desired method name, the method parameter
names and types, its return parameter names and types and any error messages. This
message format should be standardized to facilitate the creation of other types clients
that can consume the provided service.

Figure 1 summarizes the various communication components that are the current
basis of AISS’s communication infrastructure, and the components that will form
part of the internet-based robot control solution. The existing CORBA clients server
objects are on the bottom. Servers and clients must employ the IDL skeleton and
stub respectively, which are created by compiling the IDL service definition. Servers
register their service with the Naming Service and clients query the Naming Service
to get a reference to the service object. Clients invoke the desired method on the
server via the IDL stub, and receive a response from the server when it has completed
servicing the request. The TAO implementation of the CORBA specification provides
all CORBA functionality including the Naming Service, object request broker, object
adapter and IDL compiler. Miro robot services are implemented as CORBA server
objects, and can be accessed by any CORBA client. The HTTP/HTML based world
wide web and WWW browser client are on top. Web browsers, as WWW clients
can only communicate over HTTP and display information as HTML documents and
multimedia. Shown in the middle is the component - to be developed by this project
- that will enable the HTTP based WWW communication network interoperate with
the IIOP/GIOP-based CORBA communication network. This component must act
as a WWW server on one side, and a CORBA client on the other, meaning it must
understand both the HTTP and IIOP/GIOP protocols. A web browser-based client
user interface to the Miro services must also be be developed.

2.3 Criteria

The following criteria were considered when evaluating and comparing technical com-
ponents such as specific technologies and architectures that may be used in the solu-
tion:

2.3.1 Existing Infrastructure

The solution should take advantage of the existing infrastructure as much as pos-
sible; this applies only to the service component. This includes using components
of the TAO, Miro and drdcMiro modules and the C++ language whenever possible.
The reasons for this are three-fold: Using the Miro and drdcMiro modules whenever
possible will prevent the duplication of functionality, which in turn improves main-
tainability. It will also allow developers of the web-based control solution to draw on

6 DRDC Suffield TM 2009-127

Figure 1: Components of the communication framework. Shown are AISS’s existing
CORBA-based communication architecture (bottom), HTTP-based world wide web
and web browser client (top), and the interoperability component (webMiro) to be
developed in this work (middle).

DRDC Suffield TM 2009-127 7

AISS’s knowledge base with these modules. Finally, reusing these modules will lower
the entry barrier for learning this system. This consideration must be reconciled
with choosing the most appropriate tools for a particular task, and with performance
considerations.

2.3.2 Authentication

It is unclear at the time of writing of this document if user authentication and security
will be requirements of the solution. This must be considered when selecting tech-
nologies and architectures in the event that user authentication and security become
requirements.

2.3.3 Multiple Clients

It has not been specified at the time of writing of this document how multiple clients
should be handled. That is, how should requests to the same CORBA service from
different clients be handled? This will be most important when, for example, two
clients request a service which changes the robot state such as position control. While
this policy can be addressed at a later date, the selected technologies should have the
capability to receive, distinguish between, and service multiple clients. This capability
includes the ability to efficiently handle multiple requests, such as multi-threading or
multiplexing of requests.

2.3.4 Performance/Server Load

The web-based control software processes should not interfere with or excessively
affect normal operation of the robot services. As such, they should be efficient in
their use of CPU and memory resources.

2.3.5 Communication Delay

Communication delay between the client and server is a potential performance bot-
tleneck from the client’s point of view. Any solution must address this by minimizing
the execution time of all components, minimizing communication-based delays and
overhead costs (such as constantly opening sockets), and minimizing the amount of
data being transferred between client and server.

2.3.6 Media Types

It has not been specified at the time of writing of this document the types of media
that may be used to present information to the user in the client. In addition to text,

8 DRDC Suffield TM 2009-127

other media such as audio, video and animations could be used to display the status of
the robot services. For example, data from the SonarPoll service, a service that polls
for data from a sonar sensor, might by displayed more effectively as an animation
as opposed to text. Similarly, it would be desirable to display images generated by
services such as camera services. The technologies must also be evaluated by their
ability to produce or display different media types.

2.3.7 Separation of Logic and Presentation

It is generally considered good practice in web application development to separate
the presentation layer (i.e. HTML document generation) from the application logic
(interaction with the CORBA objects/services). This allows the client interface to be
developed and modified independently of the application logic, and makes it possible
to provide multiple interfaces to the same service. For example, if control from
web-enabled portable devices such as PDAs or phones is desired, the client interface
developed for computers may not be adequate. A different interface could then be
developed for mobile devices without the need for changes in the application logic.
The proposed tools and architectures should be evaluated against their adherence of
this practice.

2.3.8 CORBA Support

Compatible CORBA support is considered advantageous for this problem.

2.3.9 Ease of Deployment

Solutions and technologies were evaluated against their development and maintenance
burden. This includes the complexity of configuration required to install and maintain
a particular technology, and the complexity of installing and maintaining the number
of components in a solution.

2.3.10 Maintainability

The AISS software stack is already large and complex. The addition of the web-
Miro module should not add an undue level of additional maintenance effort. Main-
tainability means minimizing the effort required to implement changes both directly
associated with the webMiro module, such as bug fixes and features additions, and
changes required to this module in response to changes to existing or addition of new
Miro and drdcMiro services.

DRDC Suffield TM 2009-127 9

2.3.11 Scalability

The chosen solution should scale well in terms of maintenance and performance in
response to addition of new services.

2.3.12 Open Source

Where the feature-set and performance is comparable, current and active open source
projects are given preference over proprietary alternatives when selecting software
components to develop a solution for this project.

2.4 Existing Work

Kumar et al. [4], published a conference proceedings paper titled, “Accessing CORBA
Objects on the Web” and highlighted four main techniques to allow web browser-
based clients to access remote CORBA objects:

• Browser embedded Java applets: This approach involves developing a Java
applet that communicates directly with the CORBA object over IIOP or some
other custom protocol, bypassing the HTTP server altogether.

• Extensions to web browser to service the IIOP protocol: This approach
involves extending the capabilities of web browsers to handle the IIOP protocol
and communicate with CORBA objects directly.

• Custom HTTP-IIOP gateway/proxy: This approach involves configuring
web browsers to connect to a custom proxy which acts as a gateway between
the HTTP and IIOP protocols.

• Web services approach: This approach involves using a web-services stack
to present the CORBA service as a web service, so that it may be accessed by
web clients.

Each approach attempts to solve the problems mentioned in Section 2.2, while some
eliminate them completely. Examples and a brief discussion of each of these ap-
proaches is given in Section 3 along with the presentation of the corresponding tech-
nology.

3 Internet Based Control

This section introduces the various technologies that could form part of the solution
to web-based robot control. They are introduced in roughly the same order as out-
lined in section 2.4, grouped with related technologies where applicable. Section 3.1

10 DRDC Suffield TM 2009-127

presents technologies specific to WWW clients that could form part of a solution,
including approaches 1 and 2 in 2.4. Section 3.2 corresponds to approach 3 from 2.4.
Sections 3.3, 3.4 and 3.5 present a plethora of technologies belonging to approach 4:
Web Services. All of these technologies aim to provide the same functionality, which
is to allow invocation of applications on a server computer from a WWW-based client
on another computer, and return the result of the operation back to the client in the
form of an HTML document. Section 3.6 will present a number of architectures for
implementing Web Services. Finally, section 3.7 will present existing tools to facilitate
development of Web Services servers and clients.

3.1 Client-Side Technologies

Client side technologies operate within the web browser to generate dynamic content.
This approach, offloading processing onto the client, has several advantages over
approaches that interact with a server for all operations. Because communication
with the server is reduced, and thus its associated delay, these UIs are much more
responsive than the alternative, and provide a much better user experience. This also
results in reduced demand on the server, which allows it to service more clients. Java
Applets, JavaScript and Flash all fall into this category and are aimed at enabling
rich, dynamic client interfaces with all processing and presentation generation on the
client side.

3.1.1 Java Applets

Some of the early examples of robot control over the web using a standard web browser
relied on Java Applets. A Java applet is a small application compiled to Java-Byte-
Code that is downloaded by the web browser and run within the browser by a Java
Virtual Machine (JVM) [5]. Applets can also be run outside of the web browser by
the JVM. An applet can be programmed using many of the same tools and libraries
as a normal Java application, including TCP/IP and even CORBA libraries.

Applets are typically composed of widgets such as buttons, input fields, drawing areas,
etc., much like GUI applications, except that the widgets interact with processes
running in a remote location. The main goal of applets were to provide a more rich,
dynamic and responsive web client compared to traditional HTML web pages by
moving much of the processing to the client, thus reducing client-server interaction
and its associated delays.

Web-based robot control using applets is accomplished by creating one applet for each
robot service, e.g. odometry, velocity control, etc. The applet would contain all the
relevant widget elements required to fully represent and interact with the correspond-
ing CORBA service object. A web page can contain a single applet corresponding

DRDC Suffield TM 2009-127 11

to one service, or several applets each corresponding to a different/unique service
running either in the same or different computer. The applet connects directly to the
robot service, typically via TCP/IP, bypassing the HTTP/Web server all-together.
The browser thus becomes nothing more than a platform on which to run the applet.
Java includes CORBA bindings, so it is possible for applets to interact directly with
a CORBA objects/services over IIOP. This approach has been used by [6, 7, 8, 9] to
achieve web-based robot control.

Applets are an initially attractive solution as it is relatively simple to implement, and
as communication with server over TCP/IP is relatively low bandwidth should pro-
vide good performance when interacting with the server. Furthermore, this method
requires nothing on the server side other than a standard HTTP server to serve the
initial page that contains the applet(s) embedded within it. However, applets suf-
fer from a few significant drawbacks: Direct connections to the server process via
TCP/IP or IIOP can be blocked by firewalls which typically only allow HTTP traffic
for security. Not all browsers are compatible with and able to run Java Applets.
These issues will require some limitations on the final solution if applets are to be
part of it, specifically, guaranteed access over the desired protocol and the restriction
to supported browsers. Finally, the popularity of applets has decreased recently with
the proliferation of Ajax and Flash technologies.

3.1.2 Browser Extension

Yet another method to implement web-based CORBA object/service browsing is
through extending a web browser to include support for the IIOP protocol. Kumar
et al. propose this approach in [4]. They propose a URL scheme to address CORBA
service objects as follows:

iiopname://objectServer.com/objectName::methodName?par1=val1&par2=val2

where objectServer is the host name or IP address of the computer on which the
CORBA services reside, objectName is the name of the CORBA object as registered
in the NamingService, methodName is the name of the object method we wish to
invoke and parX and valX are the names and values of the method parameters. The
authors also present an attractive method to navigate a computer hosting CORBA
objects/services. If the user enters only the host name, the browser should query the
NamingService and return a web page listing each of the available CORBA services
and corresponding URLs available in that computer. When the user navigates to one
of the services, the browser should return a web page listing all methods provided
by that CORBA service, including parameter names and types and corresponding
URLs.

The authors implement this by extending a HotJava browser to support the new
protocol, and must also develop a proxy server as all the required functionality could

12 DRDC Suffield TM 2009-127

not be added to the HotJava browser. Unfortunately, they do not describe any of the
implementation details, or if the approach was successful.

As with Java Applets, this approach would have the browser communicate directly
with the CORBA objects/services. Also as with applets, this requires no additional
components on the server side. This approach also shares some of the disadvantages
of applets, namely that communication is over IIOP on a non-standard port that
could be blocked by firewalls. It is not a suitable solution as it requires considerable
modification to the web browser, certainly more than could be accomplished by a
FireFox extension for example. Despite not being a viable solution, Kumar et al.
present some interesting and attractive ideas that could be incorporated into other
solutions. For instance, the object addressing and browsing scheme is a powerful and
intuitive approach to discovering, browsing and interacting with CORBA objects over
a web browser.

3.1.3 Ajax

Ajax is a collection of web technologies aimed at providing a more dynamic, interac-
tive and responsive web browsing experience. At the core of Ajax are the JavaScript
client-side scripting language and the XMLHTTPRequest object which can make
asynchronous requests to the server. JavaScript can access the browser’s Document
Object Model (the browsers internal representation of the web page) allowing it to
dynamically update the content of the web page with data returned from the XML-
HTTPRequest without having to reload the entire web page. Because the XML-
HTTPRequest method is asynchronous, the web page is still responsive and can be
manipulated by the user while the request is being processed. Additionally, because
the data transmitted and rendered in an XMLHTTPRequest is much smaller than
a typical HTTP GET or POST call, which could return a complete web page, and
because only a small portion of the web page is updated, the response time of a
web-page that includes Ajax will be much improved. The data sent and received
in the XMLHTTPRequest call can be formatted as XML, JSON, SOAP envelopes,
HTML or plain text, each of which has advantages depending on the application.
Note that unlike Java Applets and browser extensions described above, Ajax alone
cannot enable web control though it can be a part of the solution.

There are currently no published works detailing the use of Ajax in web-based robot
control, only public accounts that give very brief descriptions and implementation
details [10, 11].

The main advantage Ajax provides is decreased delay in completing a server re-
quest and increased web page responsiveness. Additionally, the ability to connect an
XMLHTTPRequest to a specific action on the server and subsequently to a callback
function in the client which is automatically triggered when the server request is com-

DRDC Suffield TM 2009-127 13

plete, results in a system that can be programmed and behaves more like a typical,
event-driven GUI interface than a web page.

Ajax’s main disadvantages are compatibility across web browsers brought about by
varying implementations of JavaScript and XMLHTTPRequest, and of course its
reliance on JavaScript. Well established techniques exist for dealing with both how-
ever; detecting the browser and providing browser-specific code for the former and
providing static HTML equivalents if JavaScript is disabled for the latter.

Finally, several toolkits exist to facilitate developing Ajax web applications [12, 13,
14, 15, 16, 17], though some of these rely on specific server side components. These
toolkits provide libraries of UI widgets and generally automatically handle browser
incompatibility issues.

Comet
Comet, also referred to as Ajax-push or server-push, is an Ajax-related concept by
which a server pushes data to interested clients asynchronously without requiring the
client to request it. It allows data created on a server to be pushed to the client
immediately, without the client having to poll the server continuously for new data.

Comet is not a technology however, only a concept, and no standard implemen-
tation of Comet exists. Several implementations of the Comet model exist, each
with their own advantages and disadvantages. These advantages and disadvantages
revolve around the method used for circumventing the 2-open-connections-per-client-
per-domain limit specified in HTML/1.1 which is not necessarily followed by most
browsers and most of which require a specific server-side component to service the
requests.

Although no evidence was found of Comet being used in web-based robots, it is used
widely in web services and web applications and could be a useful tool, especially for
services that use the publish-subscribe pattern information.

3.1.4 Adobe Flash

Like Java Applets and Ajax, Flash is another platform for creating so called rich
internet applications, and includes development tools and a player client both stan-
dalone and browser embeddable. The term Flash is more commonly used to refer to
a Flash applications, authored with CS33or other tools, and run by the Flash player.
Flash supports Scalable Vector Graphics (SVG), streaming video and audio, and has
a scripting language similar to JavaScript called ActionScript. Flash is used exten-
sively for delivering multimedia rich web content such as video and animations, and
more recently for interactive web applications. Depending on the applications being

3Adobe’s flagship Flash IDE

14 DRDC Suffield TM 2009-127

developed, Flash applications require much less programming to develop. A simple
application can be developed with no programming at all compared to the equivalent
Ajax or Java Applet web application. Flash applications are saved as Shockwave
Flash (SWF) files, embedded in an HTML file and can be served by HTTP web
servers. Serving streaming audio and video requires a Real Time Messaging Protocol
(RTMP) server.

As a solution, Flash sits somewhere between Ajax and Java Applets. It is like applets
in that it is a compiled application embedded in the web page and requires a runtime
engine to run. It is like Ajax in that Flash can only be part of solution; specifically the
client interface as Flash applications lack the capability to connect directly to CORBA
objects on the server. Flash is better suited than Ajax for multimedia content such as
streaming audio/video, though client interaction is limited to the Flash application’s
frame. Ajax is much better suited for text manipulation and interaction with the
entire web page through its ability to directly manipulate the DOM.

Flash was used to create the interface in [18] to control a robotic arm over the internet.
Their solution included an HTTP server that served the interface web page with
an embedded Flash application, and ran a PHP script in response to GET/POST
requests. The PHP application connected to a standalone process through TCP/IP
sockets that directly controlled the robot.

Flash playback is reasonably well supported across browsers and operating systems.
There are however very few official tools for authoring Flash applications on Linux [19].
A number of open source authoring tools are available [20, 21], though none have the
full range of features available with Adobe products. Open source RTMP servers
capable of serving streaming video are also few [22]. Although Flash is proprietary
technology, many of its specifications have been published and are now public.

3.2 Custom HTTP-IIOP Proxy

A project commissioned by the ANSA [23] group undertook the task of creating a
universal solution to allow interoperability between CORBA and the WWW. It was
a large, long-term project with support from commercial partners. The project’s
goal was to make CORBA services available to WWW clients and vice versa, and
to remain compatible with existing WWW and CORBA practices, specifications and
technologies.

Among several proposed solutions was the creation of HTTP/IIOP Proxies [24]. This
solution included three components: an HTTP-to-IIOP proxy labeled H2I, an IIOP-
to-HTTP proxy labeled I2H and a locator entity. WWW clients requiring access to
CORBA object would be configured to connect to an H2I proxy. The H2I proxy would
be responsible for intercepting HTTP requests made by an WWW client, converting

DRDC Suffield TM 2009-127 15

them to the equivalent IIOP requests for a CORBA object, and converting the reply
from the CORBA object back into a response suitable for consumption by a WWW
client. Similarly, the I2H proxy was responsible for intercepting requests made over
IIOP by a CORBA object, converting them to the equivalent HTTP requests, and
converting the result back into a suitable CORBA response over IIOP. The locator
object, attached to H2I proxy, would be responsible for locating the appropriate
CORBA service location based on the HTTP request URL. Since the HTTP client
would be connected to the WWW only through the H2I proxy, the locator would have
the additional responsibility of detecting when the request made by the client could
not be serviced by any available CORBA server and was in fact intended for an HTTP
server, and forwarding the HTTP request unmodified to the HTTP destination. This
work proposed a specification for IDL mapping of HTTP requests to implement the
protocol conversion component of the proxies, and suggested various configurations
of where the H2I and I2H proxies should be located, including in the client and
server computers respectively, and ultimately integrating the functionality into the
web browser and HTTP server respectively.

Although the H2I and I2H proxies were reportedly implemented and source code is
available for both, none of their publications detail the IDL/HTTP mapping, the
implementation of the proxy mechanisms, nor present results for a working system.
Furthermore, the work used IDL instead of DII, thus it is not clear how or if service
discovery - a feature which seems necessary for a universal solution - would function,
or if the proxies could only convert request for CORBA objects for which IDLs had
been included in the proxies. Finally, since the project’s official conclusion in 1999,
there appears to have been no further activity or use of the produced software, and
although source code for the H2I and I2H proxies is available, it is not clear if it is
complete or functional. Finally, no cases were found in the literature of this approach
being used for web-based control of robots.

3.3 Server-Side Remote Code Invocation

All of the technologies below fall under the category of Web Services and require an
HTTP server with proper support for the particular technology. The essence of all
these technologies is to allow an HTTP server to invoke an application in response
to a web-browser request.

3.3.1 CGI

The Common Gateway Interface (CGI) is a standard protocol for interfacing a web
server with applications that reside on the same host. It allows clients, typically web
browsers, to execute applications on the web server. These applications format their
output as an HTML document that is returned to the requesting client. CGI was

16 DRDC Suffield TM 2009-127

the first method that enabled server-side code invocation for a web client. Despite its
many drawbacks, it is still used widely today to generate dynamic content due in large
part to its development and deployment simplicity. The executed applications can
be developed in any language; compiled or interpreted. CGI processes have a large
process creation overhead associated with every request. The CGI process first clones
the web server process, then executes the program in the clone’s address space [25, 26].
The entire process life-cycle and environment is managed by the CGI framework,
including environment variables and re-direction of stdin/out/err. CGI uses the child
process’s output stream (stdout) to create the final HTML document. Variables from
forms or other client input are passed to the process though environment variables,
and nearly every programming language has libraries to facilitate accessing these
variables. From the application developer’s point of view, writing a CGI application
is identical to writing a standalone application that writes to stdout.

Rivera et al. [27] used CGI to implement an XML-RPC-based scheme to enable
internet based control of collaborative robots, though their client was not a web
browser.

The main advantages of CGI are that it is extremely easy to develop and deploy,
and allows the free choice of any programming/scripting language. It’s overwhelm-
ing disadvantage is the extremely high process creation overhead costs, and lack of
persistence across requests. This overhead is large when the application being run is
short and when the request-rate is anything above moderate, and even larger when
an interpreter must be run as in the case of scripting languages. CGI also facilitates
the mixing of application logic and data presentation, which is generally bad practice.

To address this process creation overhead, FastCGI (discussed below) was created.
In the case of CGI scripts, an alternative to CGI are server modules discussed in
section 3.4.

3.3.2 FastCGI

FastCGI was developed specifically to address the high overhead cost of CGI requests.
Instead of creating a new environment and instance of the application for every re-
quest, FastCGI takes a different approach: It separates the application process from
the HTTP server process, and defines an API by which the application can commu-
nicate with the HTTP server. On startup the application opens a listening socket or
pipe and waits for connections. On a request, the server connects to this socket and
a simple protocol is executed. The protocol allows the process to send and receive
data to/from the server. In addition, the protocol multiplexes the single connec-
tion between several possible requests. In addition to removing CGI’s overhead cost,
FastCGI presents additional advantages including the separation of application and
HTTP server, which in turn improves stability as a crash of either process will not

DRDC Suffield TM 2009-127 17

bring down the other. Libraries to implement the FastCGI API exist for nearly all
popular languages, both compiled and interpreted.

There are currently no published works detailing the use of FastCGI as part of a
web-based robot control architecture.

3.3.3 Servlets

The servlet specification was developed by Sun MicroSystems for the Java enterprise
edition platform. Hence, the original API specification was for the Java language.
The servlet API defines a container object that interacts with an HTTP server and
a number of servlet objects which are managed by the container object. To invoke
servlets, an HTTP server is configured such that URLs matching a particular pattern
are forwarded to the container object. All HTTP method data is passed to the
container object, including complete URL, HTTP method and any parameters. The
container determines which servlet should handle the request based on the URL,
invokes the servlet and forwards all request data obtained from the HTTP server
as well as a output stream object. The individual servlets provide the application
logic which generally depends on the passed URL and parameters. The servlet writes
to the supplied output stream any data that must be sent back to client, such as a
HTML document.

The servlet specification provides no application logic, only a means by which to in-
voke modules that provide the logic based on specific URLs. A container object may
interact with an HTTP server and manage any number of servlets. The container
object is persistent across requests and so does not incur the process creation over-
head associated with CGI. Furthermore, the specification includes methods by which
servlets may maintain data across requests. Each request to a particular servlet is
handled in its own separate thread, which allows for handling of multiple simulta-
neous request from clients. Servlets are implemented as an extension of an HTTP
server, or less commonly as a server module in a manner very similar to FastCGI.

Although the original specification was for the Java language, servlet’s have been
implemented - to varying degrees of completeness and compliance to the standard -
in other languages including C++.

Servlets generally offer good performance as they do not incur the overheads present
in either CGI or FastCGI. In a comparison of Java servlets, CGI and FastCGI, Apte et
al. [25] found that when application logic was simple, Servlets performed better than
CGI or FastCGI for an equivalent task4, due to the reduced process and connection
creation overhead. However, when the application logic was CPU intensive, FastCGI
performed better than Java servlets. In addition, like any Java-based solution, servlets

4The CGI and FastCGI equivalents were implemented in C++

18 DRDC Suffield TM 2009-127

require the Java Virtual Machine runtime environment, and thus use more memory
than an equivalent C++ solution.

Advantages of servlets include: the ability to use powerful languages like Java or
C++ including all libraries available in the language, generally good performance, and
depending on the implementation, handling of each incoming request in a separate
thread. Few native implementations of the servlet specification in C++ exist, none
are open-source, and thus many of the architectural benefits of servlets are lost to
the Java language. Servlet’s disadvantage is that they impede, and in fact prevent,
the separation of logic and presentation since the servlet is responsible for both the
application logic and the document generation. This problem is marked enough that
several additional tools have been created around servlets in an attempt to remedy
it.

There are currently no published works detailing the use of servlets as part of a
web-based robot control architecture.

3.3.4 Application Server

The most common method of implementing servlets is to extend the capabilities of an
HTTP server directly or to develop the HTTP server around the servlet specification.
The result is that the servlet specification is bound to the few HTTP servers that
implement it. These HTTP servers become the application server. Most open source
application servers such as Apache Tomcat provide nothing more than the HTTP
servers and servlet implementation; creating the application logic is entirely up to
the developer. In contrast, most commercial application servers additionally provide
a large array of application logic that is largely domain specific (such as financial,
human resources and asset management, and database back-ends) and offer other
features such as load balancing and authentication. Some application servers provide
functionality for communicating with CORBA objects. Application servers are gen-
erally large, complex, costly software packages, which often require vendor support
to deploy and maintain.

Application server’s advantages over products that simply implement the servlet API
is the additional application specific functionality, configuration utilities and a sup-
port contract, though these come at a large financial cost.

There are currently no published works detailing the use of application servers as
part of a web-based robot control architecture.

DRDC Suffield TM 2009-127 19

3.4 Server-Side Scripting

Server-side scripting is a commonly used method to generate dynamic web content.
Several scripting languages are currently widely used for dynamic content creation;
a subset of the most common and widely deployed is introduced below5. Scripting
languages are generally dynamically typed, interpreted languages that run under a
virtual machine which also handles memory management. The dynamic and inter-
preted nature makes them much easier to develop with than compiled languages, but
also decreases their performance. Many scripting languages offer a bytecode or na-
tive compiler, which can increase runtime performance. A common role for scripting
languages is as a glue layer between different software components [28]. In a web ser-
vices framework, scripting languages would be the intermediary or glue between the
client and the web-service endpoint. Server-side scripting can be and often is used to
drive application logic when the logic is simple or primarily involves database access.
However if the application logic is complex, scripting languages will likely not provide
adequate performance. Server-side scripting languages’ forte is in text processing and
dynamically generating HTML documents from the results of some other programs
that run the application logic. This allows the separation of data, generated by the
application logic, and presentation,the HTML document generated by the script. All
of the languages below require an HTTP server, with proper support for the particular
interpreter, to receive client requests and invoke the local interpreter and script.

The languages are evaluated based on the following criteria:

1. CORBA support

2. Ease of deployment

3. Web related modules/support such as HTTP/HTML processing

4. Socket-based IPC support

5. Performance

6. Object Oriented programming support

CORBA support is desirable as one possible solution to web-based robot control is
for a server-side script to provide the application logic; that is for a server-side script
to communicate with the CORBA services directly. Another solution could be for the
server-side script to act as an intermediary between the HTTP server and a separate
application providing the application logic. In this scenario socket-based IPC would
be necessary. Scripts are often deployed as CGI applications, which incurs all the

5Microsoft’s ASP is another popular scripting language. However, it does not run on Linux and
hence is not considered here

20 DRDC Suffield TM 2009-127

performance penalties associated with CGI as mentioned in section 3.3. However,
plugin modules for several HTTP servers are available for these languages which
overcomes this problem by not only maintaining the virtual machine or interpreter
in memory, but also retain application variables and state across invocations. Some
scripting languages even allow the scripts to be mixed within the HTML document,
further facilitating deployment.

3.4.1 PHP

The PHP language was designed specifically for web programming and generating
dynamic web content, and as such has a wide range of utilities and features to support
this. It has a syntax similar to C/C++, and with the latest version supports some
object oriented features. It has native support in many HTTP servers and can thus
be embedded directly into HTML documents, making PHP scripts extremely easy to
deploy. The PHP script is executed, and thus the final document created, when the
HTML document is requested by the client. It can be compiled to bytecode using the
Zend engine. PHP is currently one of the most widely used web scripting languages,
and boasts a large and active community and numerous extension modules including
several for HTML and SOAP document manipulation, HTTP request handling and
socket based IPC. PHP bindings for the MICO implementations of CORBA exist,
however the status of the project is not clear.

Mookiah [11] used PHP as an intermediary component between the HTTP server and
a Java application to enable web-based control of a robot. The PHP script connected
to the Java application using sockets, forwarded the request from the client to the
Java application, and formatted the results into an HTML document. Yang et al.
used the same technique in [18] to control a robotic arm from a web-based client.

3.4.2 Ruby

Ruby is a general purpose scripting language that has recently gained popularity due
to its Rails framework. It is a fully object oriented language and its main goal is ease of
use for the developer. Consequently, it consumes more memory and performs poorer
than the equivalent PHP, Python or Perl script. Ruby also has a large and active
community and numerous modules including socket based IPC, and a few HTML
and HTTP utilities. Ruby scripts are deployed as script files which are run via CGI
or more commonly using a server module. In contrast to PHP where the script is
embedded into the HTML document, Ruby scripts generate the HTML document
as their output. Currently, there is no bytecode compiler for Ruby. Ruby CORBA
bindings for the TAO implementation of CORBA have been developed by Remedy
IT. Although Ruby does not yet have official OMG language mapping, Remedy IT
submitted a draft specification to OMG in June of 2007 [29]. No accounts were found

DRDC Suffield TM 2009-127 21

of Ruby being used as part of a web-based robot control architecture.

3.4.3 Perl

Perl is also a general purpose scripting language and is the oldest of the five presented
here. It is primarily a procedural language, though the latest version supports some
object oriented features. It’s overwhelming strength is text processing. Perl also
has a large and active community and boasts the largest number of add-on modules
of the four languages, including several for HTTP and HTML manipulation and
socket-based IPC. It is often criticized for its difficult-to-learn syntax which contains
a large number of special characters and keywords, and makes it difficult to read.
Perl compilers are available that can improve performance. Perl scripts are deployed
in the same manner as Ruby scripts. Perl bindings exist for the Orbit and MICO
implementations of CORBA. They are both mature and complete, however the MICO
binding has no maintainer. No accounts were found of Perl being used as part of a
web-based robot control architecture.

3.4.4 Python

Python is also a general purpose scripting language. It supports many programming
paradigms well (procedural, object oriented, imperative) and other partially (func-
tional). Like Ruby, it was designed with minimizing developer effort in mind, and like
Ruby this translates to lower performance, though not to the same extent. Python
has an extensive collection of libraries, including several for HTTP/HTML manipu-
lation and socket-based IPC, and is used in many web applications. Python can be
easily compiled to bytecode by the Python interpreter. Python scripts are deployed
in the same manner as Ruby and Perl. CORBA binding exists for omniORB and
Orbit CORBA implementations, though Orbit binding are only partial. No accounts
were found of Python being used as part of a web-based robot control architecture.

3.4.5 xSP

Originally implemented in Java and called Java Server Pages (JSP), this technique
for server-side dynamic content generation has been implemented in other languages.
JSP was developed to address the main drawback of servlets; combination of logic
and presentation. xSP works similarly to PHP where application code written in
C/C++, Java or some xSP specific derivative is embedded in the HTML document.
In contrast to PHP, which is parsed when the document is requested, with xSP the
HTML document is compiled prior to deployment as a shared library, bytecode or
the equivalent servlet, depending on the implementation. This results in much higher
performance than the interpreted equivalent (i.e. PHP or ASP).

22 DRDC Suffield TM 2009-127

The benefit of this approach is that it provides a higher level of abstraction to servlets,
which is attractive when servlets are part of a web services solution. No accounts
were found of xSP being used as part of a web-based robot control architecture.
Deploying xSP requires considerably more and complex configuration than the other
alternatives.

3.4.6 Comparison

Table 1 summarizes the relevant properties of each scripting language. Because it
can be embedded directly into the HTML document, PHP is the easiest to deploy.
Its main drawback is its lack of CORBA support. Ruby’s strength is its current and
compatible CORBA support, while its disadvantages include having relatively few
number of HTTP/HTML packages, compared to the other languages, and poor per-
formance. Perl boasts the largest number of modules, of the four dynamic languages,
however its syntax makes it unattractive. Python and Ruby are the most attractive
languages syntactically as they offer full Object Oriented (OO) support. xSP could
offer the best performance, especially when using C++SP, and can potentially access
a large number of existing libraries, including TAO and Miro, though difficult con-
figuration makes it unattractive. Ultimately the most appropriate scripting language
for this task depends on the chosen software architecture.

Language OO Web Modules Deployment Compilable CORBA Bindings

Perl partial y cgi/mod perl y Orbit
PHP partial y embedded/cgi/mod php y MICO1

Python y y cgi/mod python y omniORB
Ruby y limited cgi/mod php n TAO
xSP y2 y2 shared library/servlet y y2

1currently unmaintained
2whatever libraries/features are available to specific language

Table 1: Comparison of server-side scripting languages

3.5 Other Methods
3.5.1 mod corba

Mod corba is an Apache version one module that exposes the Apache “module” API
as a CORBA object allowing any CORBA service to be used as an Apache module.
This approach would have each Miro and drdcMiro service registered as an Apache
module. This project was last updated in 2001 and has had no activity since then.
Additionally, no documentation is available describing any part of the project such
as API, installation or configuration.

DRDC Suffield TM 2009-127 23

3.5.2 mod cbroker

Mod cbroker is a module for Apache that operates as an HTTP/CORBA gateway,
converting HTTP requests to CORBA object requests [30, 31]. It uses a servlet-like
architecture and API on the HTTP server end for passing data back to the client.
Figure 2 shows the resulting architecture for this solution. This approach moves the
responsibility of providing the web interface down to the individual CORBA ser-
vice. It requires that all CORBA services that wish to make themselves available
to web-based client implement two interfaces defined by the mod cbroker module:
HTTP::Servlet and HTTP::Handler. Requests made by client are received by the
HTTP server and forwarded to the mod cbroker module. The module parses the
URL and searches for the specified service in the CORBA NamingService. If found,
it calls the HTTP::Servlet object within that CORBA object, which authorizes the
transaction, creates an instance of the correct HTTP::Handler object to serve the re-
quest based on the request information passed to the Servlet object, and returns that
object to the mod cbroker module. Mod cbroker invokes the handle method on the re-
turned Handler object, passing to it the requested information and an HTTP::Stream
object in the same manner as servlets. The handle method services the request and
creates a reply document using the HTTP::Stream object. The reply document is
returned to mod cbroker, which is in turn returned to the client.

The advantages of this approach are that it results in a very scalable solution: each
new CORBA service would only need to implement the two interfaces to make itself
accessible to WWW clients. Changes to any service would not affect other services.
This solution should also provide good performance as the module is implemented
in C and the number of components are kept to a minimum. This solution could
be implemented one CORBA object at a time, which would allow its adequacy to
be evaluated early. Maintenance could be difficult as integrating the additional in-
terfaces with the upstream Miro package may be impossible, forcing the changes to
be reapplied every time the Miro package is updated. Furthermore, only text-based
media is supported via the stream object passed to the handler method, thus images,
video and sound could not be sent directly to the client. Finally, this approach would
not work with the Player/Gazebo [32] simulation package. This last point, despite its
other advantages, renders this solution unfeasible because Player/Gazebo is currently
the only system being used for simulation for DRDC research.

Although this project appears to be active as the documentation was last updated in
2007, the last source package was released in 2004. Additionally, the documentation
for this package is difficult to understand.

24 DRDC Suffield TM 2009-127

Figure 2: Cbroker based solution.

DRDC Suffield TM 2009-127 25

3.6 Web Services Models/Architectures

The concept of Web Service is relevant to this project as its aim is to expose a set
of existing services to web-based clients, which is the function of web services. Web
services can be implemented with any of the technologies described so far, and with
a number of architectures. Some architectures require certain technologies, tools
and additional components to implement, while others are little more than a set of
guidelines. The architectures only impact the server-end of the system, and from the
client’s point of view there will be little difference other than the composition of the
URL. This Section describes the three main web services architectures and examines
how each could work with a CORBA-based system.

3.6.1 RESTfull Web Services

Representational State Transfer (REST) refers to a collection of principles that out-
line an architecture for client/server interaction, typically over HTTP6. Web services
that apply or comply with these guidelines are said to be RESTfull These guidelines
include [33]:

Resource-centric: Application data and functionality are divided into resources,
and every resource is made addressable via a unique URL. Within the context of a
robot composed of CORBA services, each offering a number of methods, this guideline
could take the following shape.

http://www.robotServer.com/CORBAService1/method1/?par1=val1

http://www.robotServer.com/CORBAService1/method2/?par1=val1&par2=val2

http://www.robotServer.com/CORBAService2/method1/?par1=val1

http://www.robotServer.com/CORBAService2/method2/?par1=val1&par2=val2

This guideline has many supposed benefits including service discoverability.

Statelessness: A RESTfull Web Service specifies that interactions across requests be
stateless. The server should retain no data about the client, including authorization,
and all requests should include all necessary data for that transaction. This simplifies
the server side implementation, but complicates the client.

Connectedness: In a RESTfull Web Service, resources provide connections (links)
to other related resources. Often this includes links to all resources beneath the
current resource in the resource tree; this provides a built in mechanism for resource
service discovery. For example, the interface (i.e. web page) for the following resource

http://www.robotServer.com/CORBAService1/

6This is not a requirement of the RESTfull Web Services architecture, but for this project com-
munication between client and server will be over HTTP

26 DRDC Suffield TM 2009-127

would provide links for all resources associated with it, namely

method1/

method2/

...

methodn/

Uniform Interface: In relation to HTTP, this means using the standard HTTP
methods GET, HEAD PUT, POST and DELETE as they were intended, and de-
signing your URL’s and operations correctly. When this principle is adhered to,
GET/HEAD requests become safe meaning they do not affect resources in any way
and PUT/POST/DELETE requests are idempotent meaning calling any of these
methods with the same arguments more that once is equivalent to calling it once. In
the context of the above-mentioned URLs, if methodn only retrieved data, the GET
method should be used. If it modifies the state of the server, the POST or PUT
methods should be used.

Idempotent PUT/POST/DELETE operations are often difficult to guarantee de-
pending on the service. Within the context of a robot for example, a command to
rotate n degrees issued with either POST or PUT would not be idempotent: if the
command were issued twice or more it would leave the robot in a different state than
if it were issued once. One could instead specify a move command as an absolute
location or coordinate, but this is not always feasible or even possible.

WADL. Web Application Description Language (WADL) is an XML file describ-
ing the services offered by a RESTfull web service. Clients can use a WADL for
service discovery. However, because of the Connectedness principle, unlike WSDL
described below WADL files are not necessary for service discovery or to interact with
a RESTfull web service, and are thus seldom used.

This architecture is simple to implement as it does not rely on any specific technolo-
gies, and is in fact no more than a collection of guidelines to apply when designing
how clients interact with a service. Its lack of tools to support implementation is the
main critique against it.

3.6.2 WSDL-based Web Services

This type of Web Services architecture is currently popular, and includes a number
of specific components and technologies; at its core are the Web Services Description
Language (WSDL) and Simple Object Access Protocol (SOAP). This type of web
service is also referred to as RPC, due to its underlying RPC-based architecture, or
as SOAP-based, after its defining technology.

DRDC Suffield TM 2009-127 27

This type of Web Service uses HTTP only as a transport and container envelope, and
places an additional SOAP envelope within the HTTP envelope. A SOAP envelope is
an XML file that contains all the data required for the transaction including method
name, parameters, authentication and possibly return types and faults. This manner
of passing method name and parameters is a typical RPC architecture. In addition,
the POST method is almost always used. A simple SOAP envelope is shown below:

<?xml version="1.0"?>

<soap:Envelope xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

<soap:Body>

<m:CORBAService1 xmlns:m="http://www.robotServer.com/">

<method1>

<arg1>value</arg1>

<arg2>value</arg2>

</method1>

</m:CORBAService1>

</soap:Body>

</soap:Envelope>

Through this envelope, we are invoking method1 on CORBAService1 with arguments
arg1 and arg2. From the client’s point of view, the main visible difference compared
to a RESTfull Web Service is that all transactions take place from a single URL. For
the SOAP example shown above, the URL could be:

http://www.robotServer.com/

A WSDL file for this type of web service provides the means for service discovery,
and is the WADL equivalent for SOAP-based services (except that a WSDL file is
necessary whereas a WADL one is not). A WSDL file is an XML file that provides
all the information necessary to interact with a service, including the service location
(URL), all methods provided including parameter and return types, faults and more.
WSDL is analogous to CORBA’s IDL in that it describes all transactions and data
types that can occur between a server and client.

Web browsers do not have the functionality to either parse WSDL files or create
and parse SOAP envelopes directly, thus several additional steps and components
are required for web browsers to access SOAP-based web services. First, a library
to create, parse and marshal the request made by the browser into SOAP envelopes
must be provided; this would be much like the stub and skeleton in IDL. Finally, this
library must be made accessible to the browser. Several libraries currently exist that
provide this functionality at different locations in the architecture and for different
technologies including JavaScript, Java Servlets, CGI/FastCGI and various scripting
languages.

28 DRDC Suffield TM 2009-127

A typical deployment, for example, would have the browser invoke a small application,
via (Fast)CGI or a server script module, that would assemble the SOAP envelope and
send it to the service running on the same computer. The service would parse the
SOAP envelope, service the request, assemble the SOAP reply envelope and send it
back to the SOAP client. Finally, the SOAP client would parse the SOAP envelope,
create an HTML representation and return that to the web client. Although this
requires more steps and is considerable more involved than the previous architecture,
there are several tools that automate much of this.

One such tool worth mentioning due to its strong similarity with the CORBA ap-
plication development model is gSOAP [34]. gSOAP is an open-source package that
provides 3 components: a WSDL to C++ header file compiler, a C++ header file to
C++ stub/skeleton compiler, and a client library. The stub and skeletons produced
by the compiler serialize and deserialize the SOAP envelopes, and the client library
provides among other things a transport layer between the SOAP client and server.

The claimed advantages of this architecture are its loose coupling of components and
its quasi-statically-typed nature as a result of the WSDL. It’s strength and prominent
use scenario is in allowing different web services provided by different entities in
the enterprise arena to interoperate by providing common interface standards in a
language independent way. The main critiques against it are its complexity and loss of
functionality of the “back” button and bookmarking ability for web browsers, though
the latter two have workarounds.

3.6.3 Hybrid Web Services

Hybrid Web Services contain elements of the previous two architectures. Like the
RESTfull services, they do not require additional tools to implement, and only rely
on the HTTP protocol to operate. Like the SOAP-based services, they use an RPC-
based architecture, and do not use HTTP in its intended manner. In a Hybrid Web
Service, the URL for accessing a robot service could be:

http://www.robotServer.com/CORBAService/?method=methodname&par1=val1&par2=val2

or perhaps

http://www.robotServer.com/?CORBAService=servicename&method=methodname&par1=val1&par2=val2

All the transaction information is in the URL, as with RESTfull, however the method,
and even the CORBA Service, to invoke the transaction is a parameter instead of a
resource. Furthermore, any HTTP method (GET/POST/DELETE) could be used

DRDC Suffield TM 2009-127 29

for the transaction. Hybrid web services can span a range of similarities between the
SOAP and RESTfull architectures. There are no guidelines or tools to implement
this architecture, and the developer can make their service as much like a RESTfull
service or a SOAP-based service as they wish.

3.7 Toolkits

A vast number of toolkits and frameworks exist for any of the technologies mentioned
above. This section will briefly introduce some of the more relevant ones for this
application.

3.7.1 JavaScript/Ajax

These toolkits are aimed at facilitating the development of Ajax clients for web appli-
cations. They all provide similar resources, though some approach the development
of Ajax web clients more like traditional GUI applications.

Google Web Toolkit
Google Web Toolkit (GWT) is a framework for developing rich web-based applica-
tions. It allows developers to do develop the application in Java, which is subse-
quently compiled to JavaScript by the provided compiler. It includes libraries for
UI components, simple RPC mechanisms, browser compatibility and browser history
management.

Wt
Wt is a toolkit for developing primarily event driven web-based GUIs in C++, in the
same way traditional GUI applications are developed. In addition to UI widgets, it
provides cross-browser compatibility and an event driven model. Similar to GWT,
Wt web applications are written in one language and compiled into JavaScript and
CGI client and server components respectively.

Dojo/Script.aculo.us/Yahoo Interface Library/EXT/Mootools
All of these toolkits provide JavaScript libraries for developing Ajax web clients and
include a large array of UI elements that include animations and transition effects,
drag and drop support, cross-browser compatibility, DOM manipulation, RPC, CSS,
debugging and build control utilities.

JavaScript SOAP Client
This is a JavaScript object library to produce and consume SOAP messages. Instead
of calling a SOAP client to perform the interaction with a SOAP server, this library
allows the browser to communicate with the SOAP server directly. However, this
precludes browsers that do not support JavaScript from accessing these services.

30 DRDC Suffield TM 2009-127

3.7.2 SOAP

gSOAP
gSOAP is a toolkit for developing SOAP client and servers in C++, and consists
of a WSDL to C++ header file compiler, a C++ header file to C++ stub/skeleton
compiler, and a client library. This library can be used to develop SOAP clients
and servers from a WSDL definition of a service, with the generated code and client
libraries handling all communication between client and server and serializing and
deserializing of SOAP messages.

Scripting Languages
The Ruby, Python, PHP, and Perl scripting languages all provide a built-in SOAP
library, and several have additional 3rd party SOAP libraries.

Soap2Corba
Soap2Corba, or the SOAP to CORBA bridge parses incoming SOAP envelopes and
from it constructs a DII CORBA call. The result of the CORBA call is assembled
into a SOAP reply and sent back to the SOAP client. This project has been inactive
since its last update in 2003, but it source code could prove useful in developing the
server component.

4 Solutions

This section presents possible solutions to web-based control of Miro services. The
service and client components are presented separately as they can be considered
separate entities and largely rely on different technologies to implement. Despite
this, the design of the client component impacts the design of the service provider
component. Discussion of the relative advantages and disadvantages of each approach
are left for Section 5.

4.1 Client Solutions

The client can take two forms: It can exist exclusively in the WWW browser, or it
can contain an additional HTTP server-side component. The two components have
distinct responsibilities, and the addition of the server-side client component does
not affect the browser component’s responsibilities. The two options are described
bellow. Neither of the client components require CORBA support.

4.1.1 Browser Component

The browser component is responsible for initiating the HTTP request with the HTTP
sever, and rendering the HTML response. A browser-only solution requires less com-

DRDC Suffield TM 2009-127 31

ponents and technologies to implement and thus results in a slightly simpler overall
architecture as the browser is a direct client of the service. However, because WWW
browsers can only render HTML documents and static images 7, it forces the service
endpoint to format its responses as HTML documents; this is inflexible, forces the
mixture of logic and presentation in the service component and limits the type of
clients it may service to WWW browsers. Additionally, web browsers cannot typ-
ically add envelops to HTTP requests such as SOAP or XML-RPC because they
contain custom data, forcing the server to accept the most basic HTTP request in
addition to any other format.

Implementation
In addition to HTML and CSS, the client browser component can use any of JavaScript,
Ajax or Flash to create the user interface. Furthermore, excluding HTML these tech-
nologies could be used as little or as much as required to generate the desired interface,
without impacting the service component.

4.1.2 Server-Side Component

A second alternative is to add a server-side component to the client8 that would be
located between the browser the service endpoint. Adding this component allows
the service component to a) service only one request type, which can be designed or
selected by the developer to allow additional envelopes to be attached to the request
and b) provide its service in a representation that can more easily be consumed by
clients other than a browser by providing replies in a format more universal than an
HTML document. This component would be responsible for receiving the browser
component’s request, formatting it into an appropriate service request, making the
request, producing an HTML representation from the result and finally sending the
HTML document back to the browser component. This would be a lightweight com-
ponent, and would allow the presentation to be changed independently of the service
and vice-versa, so long as the interface between the service and server-side client com-
ponent did not change. This component need not reside on the same HTTP server as
the service endpoint. Finally, the existence of this component would be transparent
to the browser, as in either case it would make an HTTP request and receive an
HTML response.

Implementation
This component can be implemented using a script module, servlet, or (Fast)CGI.
However, because this is a lightweight component, and because its main responsibili-
ties are text manipulation and HTML document creation, a scripting language is the

7browsers can also render video and sound with the help of appropriate plugins
8“server” in this context corresponds to the HTTP server, not the service component of the

solution.

32 DRDC Suffield TM 2009-127

most appropriate technology. Specifically, a scripting language such as PHP that was
designed precisely for dynamic HTML content generation would be most appropriate.

Figure 3 shows the architecture of the possible client solutions. The server-side com-
ponent formats and relays requests/responses between the browser component and
service endpoint: it converts the HTTP request and parameters to whatever message
format the service endpoint expects and formats the response to HTML. Without
the server-side component the browser would communicate directly with the service
endpoint. An additional level of flexibility with the second approach is that the mes-
saging format the service endpoint expects could be changed without affecting the
browser component. Finally, the server-side client component need not reside on the
same computer as the service endpoint; indeed it could reside on any computer, which
would slightly reduce the load on the robot resources though would likely introduce
additional delay to requests. This would also facilitate a mechanism of service query:
the server-side client components for all robots could reside on one computer. In ad-
dition to providing part of the client functionality, this computer could be responsible
for querying all existing robots to determine if they are currently providing services.
Client components could subsequently be disabled/enabled appropriately.

4.1.3 Provision

It should be noted that much of the functionality provided by the server-side client
component could in fact be moved into the browser with the use of JavaScript. How-
ever, this would assume the browser supports JavaScript, which is not always the
case. Additionally, the main point to be made here is not so much where the func-
tionality provided by the server-side component resides, but its impact on the service
provider and it’s ability to provide an interface that can be consumed by a variety of
clients. Additionally, in practice the two components will be somewhat bound if the
browser client component is using technologies such as Ajax or Flash to modify and
display the data. Although the browser component can be modified without affecting
the server-side component, the reverse would not necessarily be true.

4.2 Service Endpoint Solutions

This component, which can also be referred to as the “Gateway”, the “Application
Server” or simply the “Service” will form the largest part of this project. It will
be responsible for converting the request from the client component to the appro-
priate CORBA call to service the request, and returning the reply to the client in a
manner that it can understand. Because this component will represent the bulk the
effort required to service the request, its performance will be crucial in keeping the
response time of a complete request low. The technologies chosen to implement this
component must have CORBA support, and furthermore should take full advantage

DRDC Suffield TM 2009-127 33

Figure 3: Client solutions’ architecture. The server-side component formats and re-
lays requests/responses between the browser component and service endpoint. With-
out the server-side component the browser would communicate directly with the
service endpoint.

34 DRDC Suffield TM 2009-127

of the existing infrastructure as much as possible. To access the CORBA objects, this
component can employ either IDL or DII. A message format between the client and
service must be defined. The message format must include provisions to transmit
all the data required to service the request, including HTTP request specific data
such as request method, request parameters and client information, CORBA specific
data such as the CORBA namespace, object or service name, method name and
method parameter names and values, and response data including error messages.
The choice of message format will be affected by the client architecture, the tools and
technologies used to implement this component and the Web-Services architecture
selected.

Potential Challenges
A potential point of conflict between CORBA and all the code invocation methods
described below and all HTTP server-based code invocation methods should be high-
lighted. With all these techniques, including FastCGI, which is a separate process
from the HTTP server, the HTTP server initiates the application to service the client’s
request, and thus effectively controls the servicing application’s main execution loop,
and in the case of FastCGI does so explicitly. Miro and drdcMiro clients that use the
Publish-Subscribe or Publish-Server and Reactor design patterns also require that
CORBA/Miro control the main execution loop. An interoperability challenge may
arise out of the requirement for both technologies to control the main execution loop9.
Two possible solutions are to avoid implementing clients with Subscribe and Reactor
patterns and use polling clients as an alternative or to provide several threads of
execution as required for each component.

IDL vs DII
Part of this component’s role will be that of a Miro service client. A CORBA client
can be implemented using either DII or IDL interfaces. DII would be preferable for a
number of reasons. It would allow a single application to act as a universal CORBA
client to all the services in the AISS suite, which would facilitate development and
maintenance, and improve scalability. A single service endpoint application would
reduce the amount of HTTP server configuration necessary and in turn simplify
deployment. However, DII may present an additional challenge in acting as a client
to services that implement the Publish pattern.

Alternatively, IDL, would require one service endpoint application for each IDL de-
fined. This represents a higher development, deployment and maintenance burden
than DII. Scalability would not be adversely affected by this approach as any num-
ber of application endpoints could be added to provide a WWW interface to new
services. This approach could also present benefits for maintenance: modifications
to one service endpoint application to fix bugs or accommodate changes in the corre-

9The mod cbroker approach described in section 3.5, in contrast, would not suffer from this
potential problem as the servicing routine would reside within the CORBA service.

DRDC Suffield TM 2009-127 35

sponding service would be isolated to one module, whereas with DII changes to the
application to accommodate a new service or fix bugs could potentially impact the
correct operation with other services. IDL does present two large advantages in that
it would provide better performance than DII and would take greater advantage of
current infrastructure and expertise as all AISS modules use IDL. The decision to
use IDL or DII will not affect the selection of the technology used to implement this
module.

The Service component can be implemented using the following technologies:

• Scripting module with CORBA support

• Servlet

• FastCGI

The details and implications of each are described below.

4.2.1 Script Module

As mentioned previously, the technologies and languages used to implement this
component will have to support CORBA. Additionally, as mentioned in section 3.4
the Ruby scripting language has an up to date and active TAO bindings project lead
by [29], and would be the most appropriate language to implement this approach.
As with any scripting language solution, this solution would be best deployed as a
server module such as Apache’s mod ruby. A scripting language such as Ruby is also
more appropriate for manipulating text than a language like C++, which would be
advantageous when parsing request and response messages from the client.

Technologies Involved
In addition to the Ruby TAO bindings, this solution would require an HTTP server
that supports running the Ruby interpreter as a module.

Figure 4 depicts the architecture for this solution. The HTTP server would receive re-
quests from the client and activate the script module to service the request. From the
HTTP request data, the module would assemble the equivalent IDL or DII CORBA
request and invoke the method on the required object. The result of the CORBA
operation would be assembled into an appropriate response, HTML or otherwise, and
sent back to the client. As mentioned previously, the server module that manages
the script environment allows for data to be saved and used in subsequent requests
allowing session management.

36 DRDC Suffield TM 2009-127

Figure 4: Scripting module solution architecture.

DRDC Suffield TM 2009-127 37

4.2.2 FastCGI

The second option for invoking server-side code from a web browser is the FastCGI
protocol. The FastCGI specification is language independent and would thus allow
this component to be developed in C++, taking full advantage of the existing AISS
infrastructure and expertise. With the FastCGI specification, the servicing applica-
tion runs as a separate process from the HTTP server, communicating through pipes
or sockets. The end of a transaction usually involves closing the connection with the
server, thus each new transaction requires a new connection be established; this is a
potential performance bottleneck. As with any standalone application, parameters
can be passed at runtime to alter its behaviour, which could have many advantages,
especially during development. The FastCGI application must link to the FastCGI
library, which handles all connections to the HTTP server. The FastCGI API is
simple and library implementations exist in most languages including C++.

Technologies Involved
The technologies involved in this solution would be an HTTP server that supports
FastCGI, the server module (such as mod fcgid for Apache), the FastCGI client li-
brary, the C++ programing language and the full AISS stack including TAO and
Miro.

Figure 5 depicts the architecture for this solution. The service endpoint would be
started independently of the HTTP server and would listen for requests over pipes
or TCP sockets from the FastCGI module within the server. The HTTP server
would receive requests from the client and forward the request data to the FastCGI
module. The FastCGI module would then open a connection to the service endpoint
and forward the request information to the service endpoint. As with the previous
solution, the service endpoint would activate the FastCGI script module to service
the request. From the HTTP request data, the module assembles and invokes the
appropriate CORBA request and prepares an appropriate reply. The reply would be
sent back to the FastCGI module and the connection closed, indicating the end of the
transaction. Finally, the FastCGI module would send the result of the transaction
back to the client. The process persistence offered by FastCGI would, like the previous
solution, allow data to persist across request thus providing a mechanism for session
management.

4.2.3 Servlet/Application Server

The Servlet API is another method for server-side code invocation from a web client.
Several implementations of the specification exist in C++ and Java, some of which
are open source and others proprietary; however, none are open source native C++
implementations. Open-source C++ servlet implementations (such as CPPSERV)
are implemented as server modules in a manner very similar to FastCGI, offering

38 DRDC Suffield TM 2009-127

Figure 5: FastCGI solution.

DRDC Suffield TM 2009-127 39

little performance advantage over FastCGI. A number of proprietary C++ application
servers exist and although they would provide good performance, they would do so at
a large development, configuration and financial expense. A C++ application server
would allow this module to take full advantage of the existing infrastructure and
expertise, but would tie the solution to a particular proprietary application server.
An open source Java application server could be an alternative, though it could
potentially perform poorly compared to a C++/FastCGI solution depending on the
load characteristics, and would not take advantage of the AISS stack. Depending on
the particular application server, the service module could be inside the HTTP server
process, meaning it could not be started independently.

Figure 6: Application server solution.

Technologies Involved
The technologies involved in implementing this solution vary. If a native C++ appli-

40 DRDC Suffield TM 2009-127

cation server is required, a product such as [35] could be used. Alternatively, Several
open source native Java application servers exist based on the Apache HTTP server
engine such as Apache’s Tomcat and Geronimo, or RedHat’s JBoss. Finally, an open
source C++ servlet-like API could be provided by [36]. In addition to the application
server, the full AISS stack could be used of if the application server is C++-based.

Figure 6 depicts the architecture for this solution. The HTTP server is extended to
implement the servlet specification, and thus becomes an application server. This
solution would operate in the same manner as the scripting module solution. As with
the previous two solutions, application servers allow persistent storage of variables
across requests allowing session management. The selected application server must
also support the PHP interpreter if this solution is to be use in combination with the
server-side client component.

5 Discussion

This section discusses the relative advantages and disadvantages of the solutions pre-
sented in the previous section with respect to the relevant criteria listed in section 2.3
and any additionally noteworthy attributes.

5.1 Client

The two choices for implementing the client are primarily architectural and will not
affect the choice of technologies used to develop each of the components: The browser
component will be implemented using XHTML, CSS, JavaScript and possibly Flash,
and the server-side component would be implemented using PHP; the use of these
technologies in their respective roles is well established. The discussion will then
centre around the relative benefits and costs of the two architectures.

5.1.1 Browser-Only vs Server-Side Solution

As mentioned previously, a browser only solution forces the service endpoint to create
and provide a presentation of the service and thus prevents separation of application
logic and presentation. This impacts many of the criteria mentioned in section 2.3.
In contrast, adding the server-side component (SSC) allows the service endpoint to
interface with clients using a more compact, universal and ultimately appropriate
messaging format (such as GData, JSON, etc.). This makes the following four points
possible:

1. it allows the client UI to be developed and modified independently of the service
endpoint,

DRDC Suffield TM 2009-127 41

2. it allows multiple web interfaces to be developed to satisfy different criteria (e.g.
for mobile devices),

3. it facilitates implementation and maintenance of the service endpoint as it would
no longer have to generate valid HTML documents, and

4. it allows any client that can understand the message format to consume this
service. For example, one could develop a GTK/QT GUI client of a particular
service(s) in C/Python/Ruby/Java that runs on a local computer, and without
the requirement of the entire AISS stack.

Delay
Without the SSC, the browser communicates directly with the service endpoint. This
solution does not incur the additional communication hop and associated delay that
the addition of a SSC would. However, if the SSC and service endpoint reside on
the same computer the delay would be minimal. Addition of the SSC also requires
additional processing (and thus delay) to create and parse the message envelope.

Performance
As mentioned above, addition of a SSC would require additional processing and thus
result in a small performance loss. This could be mitigated by placing SSC on different
computer, though this would introduce more communication delay.

Deployment
The browser-only option involves less components and would thus require less effort
to deploy. However, many HTTP servers support PHP natively and no additional
configuration would be required making the additional deployment effort minimal.

Maintainability
The SSC solution would require a slightly higher maintenance effort as more compo-
nents would be involved.

In summary, a browser only solution would be slightly simpler and yield slightly better
performance at the expense of the four points mentioned above. The magnitude of
the delay added by the SSC is currently unknown, thus its impact on the system and
client experience as a whole is unknown. Furthermore, the benefits offered by the
addition of the SSC component are known and significant.

5.2 Service
5.2.1 Script Module

Existing Infrastructure
Ruby’s CORBA support is in the form of TAO bindings, which indirectly takes advan-
tage of the underlying TAO infrastructure. This solution still does not take advantage

42 DRDC Suffield TM 2009-127

of Miro/drdcMiro packages or DRDC expertise with those packages. Developers could
not rely on AISS personnel for expertise. Furthermore, it raises the entry barrier for
current AISS personnel as they would have to learn both the Ruby language and its
TAO bindings.

Multiple Clients
HTTP server modules such as Apache’s mod ruby provided a method for data persis-
tence across requests. This could be used to implement a manner of session tracking
to enforce one-client-at-a-time policy.

Delay
This solution does not require additional inter-process communication and thus min-
imizes communication delay. However, execution time for this solution would be
substantially slower than the other options since Ruby is an interpreted and inher-
ently poor performing language. This would be especially true if DII were used.

Performance
As with any interpreted language, Ruby’s performance is considerably worse than
compiled languages and even many scripting languages, including all the languages
mentioned in section 3.4. Overall performance of this module would certainly be
worse than the C++ equivalent. However it is not clear whether the performance
would be adequate. Finally, a forthcoming Ruby bytecode compiler (YARV) should
improve performance though it is not clear by how much, nor when the compiler will
be mature enough for safe use.

Deployment
Deployment and configuration maintenance would be minimal for this solution and
would only require enabling the Ruby module and creating a filter indicating which
file types the module should service. Any HTTP server that supports running the
Ruby interpreter as a module could be used.

Maintainability
Configuration related maintenance would be minimal as mentioned above. If IDL
was selected, developing new components would require no more effort than a C++
based alternative as the Ruby CORBA package includes an IDL-to-Ruby compiler,
and deploying them would be simpler than with any other solution. If the Dynamic
Invocation Interface were used, changes to this module to accommodate new Miro
and drdcMiro services would be minimal. However, developing a large project using
dynamic languages generally requires more discipline and testing to compensate for
errors discovered and fixed at compile time with compiled languages, thus any changes
to this module should be followed by a series of tests to ensure proper operation.

Scalability
Using either IDL or DII would represent slightly less development and deploying effort

DRDC Suffield TM 2009-127 43

compared to the other solutions when adding new services due to Ruby’s dynamic
and interpreted nature. However, performance could become an issue if sufficient
services are added and the request load becomes large enough.

Open Source
All the components required to implement this solution, including HTTP servers that
support Ruby and the Ruby TAO bindings are distributed under open-source licenses.

Implementation
Implementation of this component using Ruby would represent the simplest solution
due to its dynamic type system, automatic garbage collection, attractive syntax and
easy deployment. Furthermore, the Ruby TAO bindings provided by [29] support
direct inclusion of IDL in Ruby code, possibly further facilitating development.

Advantages
The main advantages of this solution are its ease of development, deployment and
maintenance.

Disadvantages
Potentially inadequate performance - and certainly poorer than the alternatives - is
the main disadvantage with this approach. It also does not take advantage of existing
expertise, and thus raises the entry barrier for current AISS personnel. As mentioned,
this solution could potentially require more maintenance effort and additional testing.

5.2.2 FastCGI

Existing Infrastructure
FastCGI allows the service endpoint to be developed in any language that supports
pipes or sockets, and thus allows this solution to take full advantage of the existing
AISS infrastructure and expertise. This, combined with FastCGI’s relatively simple
API, would present at a low entry barrier for current AISS personnel.

Multiple Clients
The service endpoint under FastCGI runs as a separate process that persists across
requests and consequently so does its data. This can be used as a mechanism to
implement session tracking and use policies.

Delay
Request servicing with FastCGI would be fast, as the servicing application would be
developed with C++. However, the additional connection between the HTTP server
and endpoint, particularly that fact that a new connection must be opened for each
request, will be an additional source of delay.

44 DRDC Suffield TM 2009-127

Performance
Because this module can be implemented in C++ and because the FastCGI protocol
imparts little additional overhead, performance in terms of CPU and memory usage
will be good. As previously mentioned, the connection and communication between
the servicing application and the HTTP server could potentially be a performance
bottleneck.

Deployment
Deployment of FastCGI applications is slightly more complex than a script module; in
addition to a FastCGI server module (such as Apache’s mod fastcgi or mod fcgid), a
modicum of HTTP server configuration is required. The ability to start and stop the
servicing application independently of the HTTP server will also simplify deployment
and development.

Maintainability
As with the scripting solution, either DII or IDL could be used to interface with
CORBA objects. Selecting IDL would require the development of a new service
endpoint and a small amount of additional configuration for each CORBA service.
Similarly to the scripting module, the use of DII would result in few changes required
to this module to accommodate new CORBA services. The FastCGI specification,
server modules and client libraries are all mature and change little, and keeping up
to date with the implementations should not present a maintenance burden.

Scalability
Because this module would be implemented in C++ and because the FastCGI over-
head is small, this solution should scale well to increasing requests. If the request
load increases to a point where one process cannot adequately service all requests,
FastCGI offers two models for increasing capacity: Increasing the number of processes
or adding multi-threading to one process. Both are viable methods of increasing the
capacity of the application and would be investigated when necessary.

Open Source
All the components required to implement this solution, including HTTP servers that
support FastCGI and the FastCGI module are distributed under open-source licenses.

Implementation
Implementing this component as a FastCGI module would be straight forward as the
FastCGI API is relatively simple and several C/C++ libraries exist that abstract
connections and communication with the HTTP server. Furthermore, the ability
to (re)start the servicing application independently of the HTTP server would be
advantageous during development. Additionally, the bulk of this application could
first be developed as a standalone program, adding the FastCGI component at a later
time.

DRDC Suffield TM 2009-127 45

Advantages
The advantages of FastCGI are many. The API is simple and several libraries exist
that encapsulate all the implementations details. This solution allows us to take full
advantage of the AISS existing infrastructure and expertise. Several HTTP servers
support the FastCGI protocol so this solution would not be tied to a particular one.
The separation of HTTP server and application processes facilitates development. It
provides two options for increasing capacity. Finally, because the service endpoint and
HTTP server communicate over sockets, they need not reside on the same computer.
This would allow a large number of potential configurations. For example, one HTTP
server could service requests for all robots and connect to the service endpoint located
on the appropriate robot.

Disadvantages
FastCGI’s main disadvantages are the potential communication bottleneck.

5.2.3 Servlet/Application Server

Existing Infrastructure
Whether or not this solution takes advantage of the existing AISS infrastructure will
depend on the particular choice of application server. A C++ application server
could allow this solution to utilize the full AISS stack and expertise, whereas a Java
application server would not. Some commercial application servers, such as BEA’s
Tuxedo provide an implementation of CORBA which may or may not be fully com-
patible with TAO’s implementation, and it might be considered redundant to use
TAO’s implementation instead of the included one. CORBA implementations pro-
vided by whatever Java package is used by the Java application server may similarly
not be completely compatible with TAO.

Multiple Clients
Servlet containers allows data persistence across requests, and as with the previous
two solutions, this could be used for session tracking to enforce one-client-at-a-time
policy.

Delay
Because servlets run in the same process space as the HTTP server, no additional
connections are required between the servlet container and the servlets that process
the request, thus the additional communication overhead present with FastCGI would
not be an issue. A Java application server would however introduce a JVM overhead
associated performance loss and delay.

Performance
A native C++ application server would likely provide the best overall performance
of all the solutions. For a Java application server, the JVM could become a bot-

46 DRDC Suffield TM 2009-127

tleneck [25] causing performance to drop below that of FastCGI. Finally, a C++
servlet-like API would provide similar performance to FastCGI.

Deployment
Deployment of application servers, whether C++ or Java based, commercial or open
source is a complex affair requiring a large amount of relatively complex configura-
tion in part because of the additional functionality they provide. Servlet-like server
modules would require much less configuration, though more so than FastCGI.

Maintainability
Configuration related maintenance could require slightly more effort compared with
other solutions if IDL were selected. As with the other solutions, a new service end-
point (i.e. a servlet) would have to be combined for each Miro service, which would
require additional HTTP server configuration to deploy. As with the previous two so-
lutions, using DII would require little or no change in the application or configuration
to accommodate new CORBA services.

Scalability
Many application servers natively create a new thread for each servlet instance to
service each request. This would represent the most scalable situation in that no
additional developer effort would be required to ensure sufficient capacity.

Open Source
Several high quality native Java-based open-source application servers are available;
the same is not true for C++. A handful of open-source C++ server modules are
also available.

Implementation
This option would be the most complex to develop and deploy as the Servlet API is
more complex than FastCGI’s and could require substantial configuration. As with
FastCGI, the service could first be developed as a standalone application and later
integrated with the servlet infrastructure though it is less likely that this approach
will be feasible. Finally, the servlet API varies slightly between implementations,
which would likely tie this solution to the chosen application server.

Advantages
The main advantages of this approach are that it would potentially offer the best
performance and scalability if a native C++ application server were used. Addition-
ally, if the solution relied on C++, the full AISS stack could be used. Because native
application servers are an extension of the HTTP server, they have access to many
of its features such as error logging and thus result in a more integrated solution.

Disadvantages
Ironically, the main disadvantages associated with this application come about if one

DRDC Suffield TM 2009-127 47

attempts to take full advantage of its possible benefits. Although a commercial native
C++ application server such as BEA’s Tuxedo [35] would provide all the previously
mentioned advantages, it would also represent the most complex and costly solution.

5.2.4 Uncertainties

It is not yet clear what the service load characteristics will be for this system: If
the requests are relatively frequent but are serviced quickly, request servicing will
be dominated by the request overhead (HTTP server processing and additionally
connection creation/destruction for FastCGI) [25]. On the other hand, if requests are
less frequent but require slightly longer to service, request servicing will be dominated
by the service endpoint. For example, constructing and invoking the CORBA request
and parsing the result into a return envelope. In the former case, servlets would
likely provide better overall performance; in the latter a C++ based solution would;
in which case FastCGI would be a better choice than an application server. However,
the only assertion that can be made with some level of certainly is that under no
condition would the script based solution perform better than either of the other two
solutions. Even so, the overall servicing demand could be such that the Ruby-based
solution provides adequate performance.

6 Conclusion

This section will outline the approach and technologies suggested to implement the
solution to web based control, based on relative merits of the approaches presented
in Section 5.

6.1 Technology Selection
6.1.1 Client

In light of the points raised in section 5.1.1, selecting a browser-only solution which
poses an unknown performance benefit, over a solution that includes a server-side
component which poses a known architectural benefit does not seem prudent. Con-
sequently, a client solution that includes a server-side component should be adopted.
The details for implementing each component are described below.

Browser Component
In addition to XHTML and CSS, JavaScript, Ajax and Flash can both be used
to develop the browser UI component. JavaScript, Ajax and Flash have the same
aim: to enable development of rich web clients. JavaScript is supported natively
by browsers, whereas Flash support is enabled through a plugin or standalone Flash

48 DRDC Suffield TM 2009-127

player. JavaScript and Ajax are more open technologies than Flash; or at least better
supported by open source implementations.

From a development and maintenance point of view it is easier to employ one technol-
ogy instead of two for implementing a solution to a particular problem. Furthermore,
the JavaScript development model is generally simpler than Flash due to the tools
required to develop each; a text editor for the former, a proprietary IDE for the later.
There is more tools support for developing Flash, provided by the IDEs, though this
is more than made up for by the large number of available JavaScript toolkits and
libraries. For these reasons, the browser UI should be developed primarily using
JavaScript and Ajax. Flash does provide capabilities JavaScript and Ajax do not,
such as animations, and if deemed necessary Flash can be added to the browser UI
at a later time with minimal impact on the rest of the system,including existing UI
components.

Server Side Component
The use of PHP to implement this module is a simple choice. PHP is designed
specifically for generating dynamic HTML content. It’s built-in functionality and
deployment model are ideally suited for this application.

6.1.2 Service

A script based solution will yield the worst performance, regardless of the load char-
acteristics. A C++ application server based solution could yield the highest perfor-
mance, but at the expense of increased complexity and cost. FastCGI would yield
slightly lower performance than an application server, but still vastly better than
a scripting solution, and with much less development, deployment and maintenance
characteristics than an application server. It follows that FastCGI is the best choice of
technology for implementing the service endpoint component. The service endpoint
should be developed in C++ taking full advantage of the AISS stack as necessary for
CORBA communication and other functionality.

6.2 Implementation Plan

Development of the web-based robot control solution should take place stepwise with
each step building upon the previous, and should proceed as follows:

• First, a simple Miro service and client should be selected as test case; the
odometry or position control clients are candidates.

• A simple web-based client should be developed for the selected service using the
IDL interface and deployed as CGI application (for simplicity) as a proof of con-
cept and to highlight any possible compatibility issues between Miro/TAO/ACE

DRDC Suffield TM 2009-127 49

and the HTTP server. On each request this client would poll the Miro service
and display the result as a simple HTML document.

• The client should then be augmented to use the FastCGI protocol, and deployed
as such.

• The implementation of the service endpoints using the IDL versus the DII in-
terface will have an effect on later decisions including the selection of a Web
Services architecture, and thus should be selected next. Specifically, DII’s ad-
ditional implementation challenge, decreased performance and ability to inter-
operate with all Miro services should be compared against its development,
maintenance, scalability and other benefits compared to IDL.

• Next, the interfaces of all Miro services should be examined to determine the
requirement of a message format to adequately represent all the possible data
types. Next, an appropriate message format should be selected. The choice
of Web Services architecture will influence and be influenced by the message
format, and thus should be decided concurrently.

• Once the message format has been selected, the service endpoint should be
updated to respond to service requests using the message format.

• Next, the server-side client component should be developed to convert the ser-
vice reply from the message format to an HTML document.

• The browser UI should be developed next, taking full advantage of JavaScript
and Ajax. A number of the JavaScript/Ajax toolkits, mentioned in section 3.7,
should be considered.

• A URL scheme to address all possible Miro services should be developed and im-
plemented next, and will be influenced by the previously selected Web Services
architecture.

• Once all components of the system are in place and working for one service,
endpoints for each of the Miro services should be developed. If DII is selected,
the universal client should be developed first, ensuring at can interface with all
Miro services. The client UIs and server-side components for each Miro service
should be developed subsequently. If IDL is selected, the service endpoint and
client components should be developed concurrently.

• If desired or required, Flash components can be added to the client UIs to
improve the interface at any point.

• A standalone client can optionally be developed as a sample of how to interact
with the service from a non-browser client.

50 DRDC Suffield TM 2009-127

• Finally, developer and user documentation should be developed for all compo-
nents.

6.3 Contingencies

The service endpoint will be the most important and largest individual component
of entire project: it is the gateway between the WWW and CORBA, and essen-
tially what makes web-based control of CORBA objects possible. Because the load
characteristics of this system are not yet known, there exists the possibility that
the request processing overhead mentioned in section 5.2.4 could dominate request
servicing; the FastCGI communication overhead could then become a performance
bottleneck prohibiting adequate performance. In this event, the service endpoint
could be re-implemented as a C++ application server module and allow reuse of the
majority of the developed code-base.

DRDC Suffield TM 2009-127 51

References

[1] Broten, G., Monckton, S., Giesbrecht, J., Verret, S., Collier, J., and Digney, B.
(2004), Towards Distributed Intelligence - A high level definition, (DRDC
Suffield TR 2004-287) Defence R&D Canada – Suffield.

[2] Various (2007), The ADAPTIVE Communication Environment (ACE).
http://www.cs.wustl.edu/ schmidt/ACE.html.

[3] Various (2007), Real-time CORBA with TAO (The ACE ORB).
http://www.cs.wustl.edu/ schmidt/TAO.html.

[4] Kumar, Atul, Gupta, Deepak, and Jalote, Pankaj (2002), Accessing CORBA
Obejcts on the Web, In Proceedings of the IADIS International Conference
WWW/Internet, ICWI 2002, pp. 485–490.

[5] Flanagan, David, Farley, Jim, Crawford, William, and Magnusson, Kris (1999),
Java enterprise in a nutshell: a desktop quick reference, O’Reilly & Associates,
Inc.

[6] Goldberg, K., Chen, B., Solomon, R., Bui, S., Farzin, B., Heitler, J., Poon, D.,
and Smith, G. (2000), Collaborative teleoperation via the Internet, In
Proceedings of the IEEE International Conference on Robotics andAutomation,
ICRA’00., pp. 2019–2024.

[7] Schulz, D., Burgard, W., Cremers, A., Fox, D., and Thrun, S. (2000), Web
interfaces for mobile robots in public places, IEEE Robotics and Automation
Magazine, 7, 48–56.

[8] Edinbarough, Immanuel, Ramkumar, Manian, and Soundararajan, Karthik
(2002), A web-based approach to automated inspection and quality controlof
manufactured parts, In Proccedings of the 2002 ASEE Annual Conference &
Exposition: Vive L’ingenieur!

[9] Ko, CC, Chen, B.M., Chen, J., Zhuang, Y., and Tan, K.C. (2001),
Development of a web-based laboratory for control experiments on a coupled
tank apparatus, In IEEE Transactions on Education, Vol. 44, pp. 76–86.

[10] Chatila, Wael (2006), AJAX Remote Controlled Lego Robot.
http://waelchatila.com/2006/07/13/1152788433678.html.

[11] Mookiah, Prathaban (2006), Remote Robot Control with PHP.
http://marc.info/?l=php-general&m=116232713608378&w=2.

[12] Google (2007), Google Web Toolkit - Build AJAX apps in the Java language.
http://code.google.com/webtoolkit/.

52 DRDC Suffield TM 2009-127

[13] Deforche, Koen (2007), Wt: a C++ Web Toolkit.
http://www.webtoolkit.eu/wt/.

[14] Yahoo (2007), Yahoo User Interface. http://developer.yahoo.com/yui/.

[15] Foundation, D. O. J. O. (2007), DOJO: The JavaScript Toolkit.
http://dojotoolkit.org/.

[16] Various (2007), Script.aculo.us: Web 2.0 JavaScript. http://script.aculo.us/.

[17] Ext JS, LLC (2007), Ext JS - JavaScript Library. http://extjs.com/.

[18] Yang, S. H., Zuo, X., and Yang, L. (2004), Control system design for
internet-enabled arm robots, In Proceedings of the 17th international
conference on Innovations in applied artificial intelligence, pp. 663–672.

[19] Systems, Adobe (2007), Adobe Flex 2. http://www.adobe.com/products/flex/.

[20] Various (2007), Flash for Linux. http://f4l.sourceforge.net/.

[21] Various (2007), Flame project.
http://www.flameproject.org/index.php/Main Page.

[22] Various (2007), Red5 : Open Source Flash Server. http://osflash.org/red5.

[23] Various (1998), Official Record of the ANSA Project. http://www.ansa.co.uk/.

[24] Rees, O., Edwards, N., Madsen, M., Beasley, M., and McClenaghan, A. (1995),
A Web of Distributed Objects, In Proceedings of the Fourth International
World Wide Web Conference.

[25] Apte, V., Hansen, T., and Reeser, P. (2003), Performance Comparison of
Dynamic Web Platforms, Computer Communications, 26, 888–898.

[26] Titchkosky, Lance, Arlitt, Martin, and Williamson, Carey (2003), A
performance comparison of dynamic Web technologies, ACM SIGMETRICS
Performance Evaluation Review, 31, 2–11.

[27] de Rivera, G. G., Ribalda, R., Colas, J., and Garrido, J. (2005), A generic
software platform for controlling collaborative robotic system using XML-RPC,
In Proceedings of the International Conference on Advanced Intelligent
Mechatronics, IEEE/ASME 2005, pp. 1336–1341.

[28] Carlson, Kristofer J. (2005), Comparing Web Languages in Theory and
Practice, Master’s thesis, Bowie State University, Maryland, Europe.

[29] IT, Remedy, Remedy IT - Ruby CORBA Language Mapping.
http://www.theaceorb.nl/en/rclm.html.

DRDC Suffield TM 2009-127 53

[30] GradSoft (2004), ModCBroker.
http://www.gradsoft.com.ua/products/cbroker eng.html.

[31] Schevchenko, R. and Doroshenko, A. (2002), A method of mediators for
building web interfaces of CORBA distributed enterprise applications, In
Proceedings of the 2001 international conference on Information systems
technology and its applications-Volume P-2, pp. 53–63.

[32] Gerkey, Brian, Vaughan, Richard T., and Howard, Andrew (2003), The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor Systems,
Proceedings of the 11th International Conference on Advanced Robotics,
pp. 317–323.

[33] Richardson, Leonard and Ruby, Sam (2007), RESTful Web Services, O’Reilly
Media, Inc.

[34] Various (2007), gSOAP : SOAP C++ Web Services.
http://www.cs.fsu.edu/ engelen/soap.html.

[35] Inc., BEA Systems (2007), Transaction Processing Monitor, BEA Tuxedo, TP
Monitor, Monitor So-
lution, C, C++, COBOL, CORBA, C# applications to SOA, SOA Applications.
http://www.bea.com/framework.jsp?CNT=index.htm&FP=/content/products/tux.

[36] Knowledge, Total (2007), CPPSERV - Application server with Java Servlet-like
API.

54 DRDC Suffield TM 2009-127

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when document is classified)

1. ORIGINATOR (The name and address of the organization preparing the
document. Organizations for whom the document was prepared, e.g. Centre
sponsoring a contractor’s report, or tasking agency, are entered in section 8.)

Defence R&D Canada – Suffield
PO Box 4000, Station Main, Medicine Hat, AB,
Canada T1A 8K6

2. SECURITY CLASSIFICATION (Overall
security classification of the document
including special warning terms if applicable.)

UNCLASSIFIED

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S, C or U) in parentheses after the title.)

Internet Based Robot Control Using CORBA Based Communications

4. AUTHORS (Last name, followed by initials – ranks, titles, etc. not to be used.)

Verret, S.; Collier, J.; Bertoldi, A.v.

5. DATE OF PUBLICATION (Month and year of publication of
document.)

December 2009

6a. NO. OF PAGES (Total
containing information.
Include Annexes,
Appendices, etc.)

70

6b. NO. OF REFS (Total
cited in document.)

36

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter
the type of report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is
covered.)

Technical Memorandum

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development –
include address.)

Defence R&D Canada – Suffield
PO Box 4000, Station Main, Medicine Hat, AB, Canada T1A 8K6

9a. PROJECT NO. (The applicable research and development
project number under which the document was written.
Please specify whether project or grant.)

42zz78

9b. GRANT OR CONTRACT NO. (If appropriate, the applicable
number under which the document was written.)

10a. ORIGINATOR’S DOCUMENT NUMBER (The official
document number by which the document is identified by the
originating activity. This number must be unique to this
document.)

DRDC Suffield TM 2009-127

10b. OTHER DOCUMENT NO(s). (Any other numbers which may
be assigned this document either by the originator or by the
sponsor.)

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security
classification.)

(X) Unlimited distribution
() Defence departments and defence contractors; further distribution only as approved
() Defence departments and Canadian defence contractors; further distribution only as approved
() Government departments and agencies; further distribution only as approved
() Defence departments; further distribution only as approved
() Other (please specify):

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond
to the Document Availability (11). However, where further distribution (beyond the audience specified in (11)) is possible, a wider
announcement audience may be selected.)

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual.)

Researchers in the field of robotics have been seeking methods to both control and monitor their
vehicles. Unfortunately the programs they have developed to perform these tasks are normally
dependent on the robotic software infrastructure or are very difficult to understand for an outside
user. This paper looks to tackle the problem of monitoring and controlling a robotics system
using a web browser. The goal of this paper is to describe the potential for a system that will
control and monitor a CORBA based robotics framework from a simple HTTP based browser.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could
be helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as
equipment model designation, trade name, military project code name, geographic location may also be included. If possible keywords
should be selected from a published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified.
If it is not possible to select indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

ACE
TAO
MIRO
CORBA
HTML
web based control
robotics

Defence R&D Canada R & D pour la défense Canada

 Canada's Leader in Defence

and National Security
Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

